Search Results

You are looking at 11 - 17 of 17 items for

  • Author: Jérôme Bertherat x
  • All content x
Clear All Modify Search
Free access

Isadora Pontes Cavalcante, Anna Vaczlavik, Ludivine Drougat, Claudimara Ferini Pacicco Lotfi, Karine Perlemoine, Christopher Ribes, Marthe Rizk-Rabin, Eric Clauser, Maria Candida Barisson Villares Fragoso, Jérôme Bertherat, and Bruno Ragazzon

ARMC5 (Armadillo repeat containing 5 gene) was identified as a new tumor suppressor gene responsible for hereditary adrenocortical tumors and meningiomas. ARMC5 is ubiquitously expressed and encodes a protein which contains a N-terminal Armadillo repeat domain and a C-terminal BTB (Bric-a-Brac, Tramtrack and Broad-complex) domain, both docking platforms for numerous proteins. At present, expression regulation and mechanisms of action of ARMC5 are almost unknown. In this study, we showed that ARMC5 interacts with CUL3 requiring its BTB domain. This interaction leads to ARMC5 ubiquitination and further degradation by the proteasome. ARMC5 alters cell cycle (G1/S phases and cyclin E accumulation) and this effect is blocked by CUL3. Moreover, missense mutants in the BTB domain of ARMC5, identified in patients with multiple adrenocortical tumors, are neither able to interact and be degraded by CUL3/proteasome nor alter cell cycle. These data show a new mechanism of regulation of the ARMC5 protein and open new perspectives in the understanding of its tumor suppressor activity.

Open access

Laura C Hernández-Ramírez, Ryhem Gam, Nuria Valdés, Maya B Lodish, Nathan Pankratz, Aurelio Balsalobre, Yves Gauthier, Fabio R Faucz, Giampaolo Trivellin, Prashant Chittiboina, John Lane, Denise M Kay, Aggeliki Dimopoulos, Stephan Gaillard, Mario Neou, Jérôme Bertherat, Guillaume Assié, Chiara Villa, James L Mills, Jacques Drouin, and Constantine A Stratakis

The CABLES1 cell cycle regulator participates in the adrenal–pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing’s disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene.

Restricted access

Fady Hannah-Shmouni, Annabel Berthon, Fabio R Faucz, Juan Medina Briceno, Andrea Gutierrez Maria, Andrew Demidowich, Mirko Peitzsch, Jimmy Masjkur, Fidéline Bonnet-Serrano, Anna Vaczlavik, Jérôme Bertherat, Martin Reincke, Graeme Eisenhofer, and Constantine A Stratakis

Biochemical characterization of primary bilateral macronodular adrenocortical hyperplasia (PBMAH) by distinct plasma steroid profiles and its putative correlation to disease has not been previously studied. LC-MS/MS–based steroid profiling of 16 plasma steroids was applied to 36 subjects (22 females, 14 males) with PBMAH, 19 subjects (16 females, 3 males) with other forms of adrenal Cushing's syndrome (ACS), and an age and sex-matched control group. Germline ARMC5 sequencing was performed in all PBMAH cases. Compared to controls, PBMAH showed increased plasma 11-deoxycortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycortisol, and aldosterone, but lower progesterone, DHEA, and DHEA-S with distinct differences in subjects with and without pathogenic variants in ARMC5. Steroids that showed isolated differences included cortisol and 18-oxocortisol with higher (P < 0.05) concentrations in ACS than in controls and aldosterone with higher concentrations in PBMAH when compared to controls. Larger differences in PBMAH than with ACS were most clear for corticosterone, but there were also trends in this direction for 18-hydroxycortisol and aldosterone. Logistic regression analysis indicated four steroids – DHEA, 11-deoxycortisol, 18-oxocortisol, and corticosterone – with the most power for distinguishing the groups. Discriminant analyses with step-wise variable selection indicated correct classification of 95.2% of all subjects of the four groups using a panel of nine steroids; correct classification of subjects with and without germline variants in ARMC5 was achieved in 91.7% of subjects with PBMAH. Subjects with PBMAH show distinctive plasma steroid profiles that may offer a supplementary single-test alternative for screening purposes.

Restricted access

Stephanie Espiard, Ludivine Drougat, Nikolaos Settas, Sara Haydar, Kerstin Bathon, Edra London, Isaac Levy, Fabio R Faucz, Davide Calebiro, Jérôme Bertherat, Dong Li, Michael A Levine, and Constantine A Stratakis

Genetic variants in components of the protein kinase A (PKA) enzyme have been associated with various defects and neoplasms in the context of Carney complex (CNC) and in isolated cases, such as in primary pigmented nodular adrenocortical disease (PPNAD), cortisol-producing adrenal adenomas (CPAs), and various cancers. PRKAR1A mutations have been found in subjects with impaired cAMP-dependent signaling and skeletal defects; bone tumors also develop in both humans and mice with PKA abnormalities. We studied the PRKACB gene in 148 subjects with PPNAD and related disorders, who did not have other PKA-related defects and identified two subjects with possibly pathogenic PRKACB gene variants and unusual bone and endocrine phenotypes. The first presented with bone and other abnormalities and carried a de novo c.858_860GAA (p.K286del) variant. The second subject carried the c.899C>T (p.T300M or p.T347M in another isoform) variant and had a PPNAD-like phenotype. Both variants are highly conserved in the PRKACB gene. In functional studies, the p.K286del variant affected PRKACB protein stability and led to increased PKA signaling. The p.T300M variant did not affect protein stability or response to cAMP and its pathogenicity remains uncertain. We conclude that PRKACB germline variants are uncommon but may be associated with phenotypes that resemble those of other PKA-related defects. However, detailed investigation of each variant is needed as PRKACB appears to be only rarely affected in these conditions, and variants such as p.T300M maybe proven to be clinically insignificant, whereas others (such as p.K286del) are clearly pathogenic and may be responsible for a novel syndrome, associated with endocrine and skeletal abnormalities.

Free access

Florian Haller, Evgeny A Moskalev, Fabio R Faucz, Sarah Barthelmeß, Stefan Wiemann, Matthias Bieg, Guillaume Assie, Jerome Bertherat, Inga-Marie Schaefer, Claudia Otto, Eleanor Rattenberry, Eamonn R Maher, Philipp Ströbel, Martin Werner, J Aidan Carney, Arndt Hartmann, Constantine A Stratakis, and Abbas Agaimy

Carney triad (CT) is a rare condition with synchronous or metachronous occurrence of gastrointestinal stromal tumors (GISTs), paragangliomas (PGLs), and pulmonary chondromas in a patient. In contrast to Carney–Stratakis syndrome (CSS) and familial PGL syndromes, no germline or somatic mutations in the succinate dehydrogenase (SDH) complex subunits A, B, C, or D have been found in most tumors and/or patients with CT. Nonetheless, the tumors arising among patients with CT, CSS, or familial PGL share a similar morphology with loss of the SDHB subunit on the protein level. For the current study, we employed massive parallel bisulfite sequencing to evaluate DNA methylation patterns in CpG islands in proximity to the gene loci of all four SDH subunits. For the first time, we report on a recurrent aberrant dense DNA methylation at the gene locus of SDHC in tumors of patients with CT, which was not present in tumors of patients with CSS or PGL, or in sporadic GISTs with KIT mutations. This DNA methylation pattern was correlated to a reduced mRNA expression of SDHC, and concurrent loss of the SDHC subunit on the protein level. Collectively, these data suggest epigenetic inactivation of the SDHC gene locus with functional impairment of the SDH complex as a plausible alternate mechanism of tumorigenesis in CT.

Restricted access

Simon Faillot, Thomas Foulonneau, Mario Néou, Stéphanie Espiard, Simon Garinet, Anna Vaczlavik, Anne Jouinot, Windy Rondof, Amandine Septier, Ludivine Drougat, Karine Hécale-Perlemoine, Bruno Ragazzon, Marthe Rizk-Rabin, Mathilde Sibony, Fidéline Bonnet-Serrano, Jean Guibourdenche, Rosella Libé, Lionel Groussin, Bertrand Dousset, Aurélien de Reyniès, Jérôme Bertherat, and Guillaume Assié

Benign adrenal tumors cover a spectrum of lesions with distinct morphology and steroid secretion. Current classification is empirical. Beyond a few driver mutations, pathophysiology is not well understood. Here, a pangenomic characterization of benign adrenocortical tumors is proposed, aiming at unbiased classification and new pathophysiological insights. Benign adrenocortical tumors (n = 146) were analyzed by transcriptome, methylome, miRNome, chromosomal alterations and mutational status, using expression arrays, methylation arrays, miRNA sequencing, SNP arrays, and exome or targeted next-generation sequencing respectively. Pathological and hormonal data were collected for all tumors. Pangenomic analysis identifies four distinct molecular categories: (1) tumors responsible for overt Cushing, gathering distinct tumor types, sharing a common cAMP/PKA pathway activation by distinct mechanisms; (2) adenomas with mild autonomous cortisol excess and non-functioning adenomas, associated with beta-catenin mutations; (3) primary macronodular hyperplasia with ARMC5 mutations, showing an ovarian expression signature; (4) aldosterone-producing adrenocortical adenomas, apart from other benign tumors. Epigenetic alterations and steroidogenesis seem associated, including CpG island hypomethylation in tumors with no or mild cortisol secretion, miRNA patterns defining specific molecular groups, and direct regulation of steroidogenic enzyme expression by methylation. Chromosomal alterations and somatic mutations are subclonal, found in less than 2/3 of cells. New pathophysiological insights, including distinct molecular signatures supporting the difference between mild autonomous cortisol excess and overt Cushing, ARMC5 implication into the adreno-gonadal differentiation faith, and the subclonal nature of driver alterations in benign tumors, will orient future research. This first genomic classification provides a large amount of data as a starting point.

Free access

Liliya Rostomyan, Adrian F Daly, Patrick Petrossians, Emil Nachev, Anurag R Lila, Anne-Lise Lecoq, Beatriz Lecumberri, Giampaolo Trivellin, Roberto Salvatori, Andreas G Moraitis, Ian Holdaway, Dianne J Kranenburg - van Klaveren, Maria Chiara Zatelli, Nuria Palacios, Cecile Nozieres, Margaret Zacharin, Tapani Ebeling, Marja Ojaniemi, Liudmila Rozhinskaya, Elisa Verrua, Marie-Lise Jaffrain-Rea, Silvia Filipponi, Daria Gusakova, Vyacheslav Pronin, Jerome Bertherat, Zhanna Belaya, Irena Ilovayskaya, Mona Sahnoun-Fathallah, Caroline Sievers, Gunter K Stalla, Emilie Castermans, Jean-Hubert Caberg, Ekaterina Sorkina, Renata Simona Auriemma, Sachin Mittal, Maria Kareva, Philippe A Lysy, Philippe Emy, Ernesto De Menis, Catherine S Choong, Giovanna Mantovani, Vincent Bours, Wouter De Herder, Thierry Brue, Anne Barlier, Sebastian J C M M Neggers, Sabina Zacharieva, Philippe Chanson, Nalini Samir Shah, Constantine A Stratakis, Luciana A Naves, and Albert Beckers

Despite being a classical growth disorder, pituitary gigantism has not been studied previously in a standardized way. We performed a retrospective, multicenter, international study to characterize a large series of pituitary gigantism patients. We included 208 patients (163 males; 78.4%) with growth hormone excess and a current/previous abnormal growth velocity for age or final height >2 s.d. above country normal means. The median onset of rapid growth was 13 years and occurred significantly earlier in females than in males; pituitary adenomas were diagnosed earlier in females than males (15.8 vs 21.5 years respectively). Adenomas were ≥10 mm (i.e., macroadenomas) in 84%, of which extrasellar extension occurred in 77% and invasion in 54%. GH/IGF1 control was achieved in 39% during long-term follow-up. Final height was greater in younger onset patients, with larger tumors and higher GH levels. Later disease control was associated with a greater difference from mid-parental height (r=0.23, P=0.02). AIP mutations occurred in 29%; microduplication at Xq26.3 – X-linked acrogigantism (X-LAG) – occurred in two familial isolated pituitary adenoma kindreds and in ten sporadic patients. Tumor size was not different in X-LAG, AIP mutated and genetically negative patient groups. AIP-mutated and X-LAG patients were significantly younger at onset and diagnosis, but disease control was worse in genetically negative cases. Pituitary gigantism patients are characterized by male predominance and large tumors that are difficult to control. Treatment delay increases final height and symptom burden. AIP mutations and X-LAG explain many cases, but no genetic etiology is seen in >50% of cases.