Search Results

You are looking at 101 - 110 of 184 items for

  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Follicular x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

Kyoungjune Pak, Seong-Jang Kim, In Joo Kim, Bo Hyun Kim, Sang Soo Kim, and Yun Kyung Jeon

The incidence of thyroid cancer in both men and women is increasing faster than that of any other cancer. Although positron emission tomography (PET) using 18F-fluorodeoxyglucose (FDG) has received much attention, the use of FDG PET for the management of thyroid cancer is limited primarily to postoperative follow-up. However, it might have a role in selected, more aggressive pathologies, and so patients at a high risk of distant metastasis may benefit from PET before surgery. As less FDG-avid thyroid cancers may lower the diagnostic accuracy of PET in preoperative assessment, an understanding of FDG avidity is important for the evaluation of thyroid cancer. FDG avidity has been shown to be associated with tumor size, lymph node metastasis, and glucose transporter expression and differentiation. As PET is commonly used in clinical practice, the detection of incidentalomas by PET is increasing. However, incidentalomas detected by PET have a high risk of malignancy. Clinicians handling cytologically indeterminate nodules face a dilemma regarding a procedure for a definitive diagnosis, usually lobectomy. With ‘nondiagnostic (ND)’ fine-needle biopsy (FNA), PET has shown a negative predictive value (NPV) of 100%, which indicates that negative uptake in a ND FNA procedure accurately excludes malignancy. With ‘atypia of undetermined significance’ or ‘follicular neoplasm’, the sensitivity and NPV of PET are 84 and 88%. PET does not provide additional information for the preoperative assessment of thyroid cancer. However, factors associated with FDG positivity are related to a poor prognosis; therefore, FDG PET scans before surgery may facilitate the prediction of the prognosis of differentiated thyroid cancer.

Free access

Hai-Yan Zhang, Hua-Qin Wang, Hai-Mei Liu, Yifu Guan, and Zhen-Xian Du

DJ-1, a cancer-associated protein protects cells from multiple toxic stresses. The expression of DJ-1 and its influence on thyroid cancer cell death has not been investigated so far. We analyzed DJ-1 expression in human thyroid carcinoma cell lines and the effect of DJ-1 on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. DJ-1 was expressed in human thyroid carcinoma cell lines; small interfering RNA-mediated downregulation of its levels significantly sensitized thyroid carcinoma cells to TRAIL-induced apoptosis, whereas the forced exogenous expression of DJ-1 significantly suppressed cell death induced by TRAIL. We also report here that TRAIL-induced thyroid cancer cell apoptosis is mediated by oxidative stress and that DJ-1, a potent nutritional antioxidant, protects cancer cells from apoptosis at least in part by impeding the elevation of reactive oxygen species levels induced by TRAIL and impairing caspase-8 activation. Subsequently, we investigated DJ-1 expression in 52 normal and 74 primary thyroid carcinomas from patients of China Medical University. The protein was not detectable in the 52 specimens of normal thyroid, while 70 out of 74 analyzed carcinomas (33 out of 33 follicular, 17 out of 19 papillary, 12 out of 13 medullar, and 8 out of 9 anaplastic) were clearly positive for DJ-1 expression. Our data demonstrated that DJ-1 is specifically expressed in thyroid carcinomas and not in the normal thyroid tissue. In addition, the protein modulates the response to TRAIL-mediated apoptosis in human neoplastic thyroid cells, at least partially through its antioxidant property.

Free access

Xuguang Zhu, Dong Wook Kim, Li Zhao, Mark C Willingham, and Sheue-yann Cheng

Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer. However, patients were resistant to vorinostat treatment. To understand the molecular basis of resistance, we tested the efficacy of SAHA in two mouse models of metastatic follicular thyroid cancer: ThrbPV/PV and ThrbPV/PVPten+/− mice. In both, thyroid cancer is driven by overactivation of PI3K-AKT signaling. However, the latter exhibit more aggressive cancer progression due to haplodeficiency of the tumor suppressor, the Pten gene. SAHA had no effects on thyroid cancer progression in ThrbPV/PV mice, indicative of resistance to SAHA. Unexpectedly, thyroid cancer progressed in SAHA-treated ThrbPV/PVPten+/− mice with accelerated occurrence of vascular invasion, anaplastic foci, and lung metastasis. Molecular analyses showed further activated PI3K-AKT in thyroid tumors of SAHA-treated ThrbPV/PVPten+/− mice, resulting in the activated effectors, p-Rb, CDK6, p21Cip1, p-cSrc, ezrin, and matrix metalloproteinases, to increase proliferation and invasion of tumor cells. Single-molecule DNA analysis indicated that the wild-type allele of the Pten gene was progressively lost, whereas carcinogenesis progressed in SAHA-treated ThrbPV/PVPten+/− mice. Thus, this study has uncovered a novel mechanism by which SAHA-induced loss of the tumor suppressor Pten gene to promote thyroid cancer progression. Effectors downstream of the Pten loss-induced signaling may be potential targets to overcome resistance of thyroid cancer to SAHA.

Free access

Eleonore Fröhlich, Fausto Machicao, and Richard Wahl

Differentiating drugs may be able to re-sensitize thyroid carcinomas to radioiodine therapy. Substituted thiazolidinediones (TZDs) belong to the group of oral anti-diabetic drugs that also possess anti-proliferative and pro-apoptotic effects and, potentially, differentiating effects on several cancer cell lines. Some of the effects are mediated via the peroxisome proliferator-activated receptor gamma (PPAR-γ). We investigated the effect of troglitazone, rosiglitazone and pioglitazone on differentiation in normal porcine thyrocytes and in the follicular carcinoma cell lines FTC 133 and FTC 238. Differentiation was investigated by measuring 125I uptake and the expression of sodium-iodide symporter and thyroglobulin proteins. The TZDs were tested in the presence of retinol and retinoic acid. Additionally, proliferation was evaluated by [3H]thymidine uptake and cell number and apoptosis by annexin V-labeling. Controls included tocopherol and unsubstituted thiazolidinedione and co-incubation of the TZDs with the PPAR-γ antagonist GW9662. PPAR-γ and retinol X receptor (RXR)-α were investigated by immunocytochemistry, Western blot and RT-PCR. Cells derived from the metastasis showed greater responses than cells derived from the primary tumor. Troglitazone showed greater effects than the other TZDs. Troglitazone significantly increased 125I uptake and apoptosis and decreased [3H]thymidine uptake and cell number. The amount of the sodium iodide-symporter in the membrane fraction was significantly increased, while that of thyroglobulin was not influenced by the treatment. Inclusion of antagonist did not abolish these effects. No synergistic effect with any retinoid was detected. All transformed cells expressed PPAR-γ and RXR-α but TZDs did not change their expression.

Troglitazone appears to be suited for the re-differentiation treatment of dedifferentiated thyroid carcinoma because its action is twofold. On the one hand it increases differentiation and on the other hand it inhibits proliferation.

Free access

Maria Rosaria Sapio, Anna Guerra, Daniela Posca, Paolo Piero Limone, Maurilio Deandrea, Manuela Motta, Giancarlo Troncone, Alessia Caleo, Pasquale Vallefuoco, Guido Rossi, Gianfranco Fenzi, and Mario Vitale

Ten to fifteen percent of fine-needle aspiration biopsy (FNAB) of thyroid nodules are indeterminate. Galectin-3 (Gal-3) and the oncogene BRAF V600E are markers of malignancy useful to improve FNAB accuracy. The objective of this study was to determine whether the combined analysis of Gal-3 and BRAF V600E expression in thyroid aspirates could improve the diagnosis in FNAB with suspicious cytological findings. Two hundred and sixty-one surgical thyroid tissues and one hundred and forty-four thyroid aspirates were analyzed for the presence of the two markers. In surgical specimens, Gal-3 expression was present in 27.4% benign nodules, 91.9% papillary (PTC) and 75% follicular (FTC) thyroid carcinomas. BRAF V600E was not detected in 127 benign nodules, as well as in 32 FTCs, while was found in 42.9% PTC. No correlation was found between BRAF mutation and Gal-3 expression. Forty-seven consecutive FNAB suspicious for PTC were analyzed for the presence of the two markers. Of these nodules, 23 were benign at histology, 6 were positive for Gal-3, none displayed BRAF V600E, and 17 were negative for both the markers. Twenty suspicious nodules were diagnosed as PTC and four FTCs at histology. Of these 24 carcinomas, 9 resulted positive for BRAF V600E, 17 for Gal-3, and 22 for one or both the markers. The sensitivity, specificity, and accuracy for the presence of Gal-3 and/or BRAFV600E were significantly higher than those obtained for the two markers alone. Notably, the negative predictive value increased from 70.8 to 89.5%. In conclusion, the combined detection of Gal-3 and BRAF V600E improves the diagnosis in FNAB with cytological findings suspicious for PTC and finds clinical application in selected cases.

Free access

Sonja Balthasar, Nina Bergelin, Christoffer Löf, Minna Vainio, Sture Andersson, and Kid Törnquist

Sphingosine-1-phosphate (S1P) induces migration of human ML-1 thyroid follicular cancer cells and inhibits migration of human FRO anaplastic thyroid cancer cells. As tumour cells often secrete vascular endothelial growth factor (VEGF), we investigated a possible interaction between S1P and VEGF signalling in the regulation of thyroid tumour cell migration. We found that both ML-1 and FRO cells secreted VEGF-A (∼3.6 and <0.1 ng/106 cells/day respectively) and VEGF-C (∼3.0 and 0.14 ng/106 cells/day respectively). S1P stimulated VEGF-A secretion in both cell lines, and blocking S1P receptors 1, 2 and 3 attenuated the S1P-evoked secretion of VEGF-A. Neither TSH nor insulin affected the amount of secreted VEGF-A or -C in ML-1 cells, while simultaneous stimulation with insulin and S1P increased VEGF-C secretion in FRO cells. Both cell lines expressed VEGF receptor 2 (VEGFR-2) mRNA and proteins. Serum-evoked migration of both ML-1 and FRO cells was attenuated when VEGFR-2 was inhibited. Moreover, inhibiting VEGFR-2 in ML-1 cells resulted in a rapid downregulation of S1P1 mRNA expression and S1P1 protein levels, suppression of S1P-induced migration and a decrease in S1P-induced Akt phosphorylation. A VEGF-neutralizing antibody also reduced S1P-induced migration. In ML-1 cells, S1P phosphorylated VEGFR-2. In addition, VEGFR-2 inhibition resulted in the upregulation of S1P3 mRNA within 24 h, but a significant increase in S1P3 protein levels was not observed. VEGFR-2 inhibition, but not a VEGF-neutralizing antibody, reduced ML-1 cell proliferation independently of S1P stimulation. The results indicate a complex interaction between S1P and VEGFR-2 in ML-1 cells, particularly in regulating migratory responses.

Free access

Alessandro Antonelli, Silvia Martina Ferrari, Poupak Fallahi, Silvia Frascerra, Simona Piaggi, Stefania Gelmini, Cristiana Lupi, Michele Minuto, Piero Berti, Salvatore Benvenga, Fulvio Basolo, Claudio Orlando, and Paolo Miccoli

In papillary thyroid carcinomas (PTCs), oncogenes activate a transcriptional program including the upregulation of CXCL10 chemokine, which stimulates proliferation and invasion. Furthermore, peroxisome proliferator-activated receptor-γ (PPARγ) activators thiazolidinediones (TZDs) modulate CXCL10 secretion in normal thyroid follicular cells (TFC), and inhibit PTC growth. Until now, no study has evaluated the effect of cytokines on CXCL10 secretion in PTCs, nor the effect of PPARγ activation. The combined effects of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) stimulation on CXCL10 secretion in primary cells from PTCs and TFC were tested. Furthermore, the effect of PPARγ activation by TZDs, on CXCL10 secretion and proliferation in these cell types was studied. In primary cultures of TFC and PTCs CXCL10 production was absent under basal conditions; a similar dose-dependent secretion of CXCL10 was induced by IFNγ in both cell types. TNFα alone induced a slight but significant CXCL10 secretion only in PTCs. The stimulation with IFNγ+TNFα induced a synergistic CXCL10 release in both cell types; however, a secretion more than ten times higher was induced in PTCs. Treatment of TFC with TZDs dose-dependently suppressed IFNγ+TNFα-induced CXCL10 release, while TZDs stimulated CXCL10 secretion in PTCs. A significant antiproliferative effect by TZDs was observed only in PTCs. In conclusion, a dysregulation of CXCL10 secretion has been shown in PTCs. In fact, a CXCL10 secretion more than ten times higher has been induced by IFNγ+TNFα in PTCs with respect to TFC. Moreover, TZDs inhibited CXCL10 secretion in TFC and stimulated it in PTCs. The effect of TZDs on CXCL10 was unrelated to the significant antiproliferative effect in PTCs.

Free access

Kensey Bergdorf, Donna C Ferguson, Mitra Mehrad, Kim Ely, Thomas Stricker, and Vivian L Weiss

The prevalence of thyroid carcinoma is increasing and represents the most common endocrine malignancy, with papillary thyroid carcinoma (PTC) being the most frequent subtype. The genetic alterations identified in PTCs fail to distinguish tumors with different clinical behaviors, such as extra-thyroidal extension and lymph node metastasis. We hypothesize that the immune microenvironment may play a critical role in tumor invasion and metastasis. Computational immunogenomic analysis was performed on 568 PTC samples in The Cancer Genome Atlas using CIBERSORT, TIMER and TIDE deconvolution analytic tools for characterizing immune cell composition. Immune cell infiltrates were correlated with histologic type, mutational type, tumor pathologic T stage and lymph node N stage. Dendritic cells (DCs) are highly associated with more locally advanced tumor T stage (T3/T4, odds ratio (OR) = 2.6, CI = 1.4–4.5, P = 5.4 × 10−4). Increased dendritic cells (OR = 3.4, CI = 1.9–6.3, P = 5.5 × 10−5) and neutrophils (OR = 10.5, CI = 2.7–44, P = 8.7 × 10−4) significantly correlate with lymph node metastasis. In addition, dendritic cells positively correlate with tall cell morphology (OR = 4.5, CI = 1.6–13, P = 4.9 × 10−3) and neutrophils negatively correlate with follicular morphology (OR = 1.3 × 10−3, CI = 5.3 × 10−5–0.031, P = 4.1 × 10−5). TIDE analysis indicates an immune-exclusive phenotype that may be mediated by increased galectin-3 found in PTCs. Thus, characterization of the PTC immune microenvironment using three computational platforms shows that specific immune cells correlate with mutational type, histologic type, local tumor extent and lymph node metastasis. Immunologic evaluation of PTCs may provide a better indication of biologic behavior, resulting in the improved diagnosis and treatment of thyroid cancer.

Free access

Thomas A Werner, Inga Nolten, Levent Dizdar, Jasmin C Riemer, Sina C Schütte, Pablo E Verde, Katharina Raba, Matthias Schott, Wolfram T Knoefel, and Andreas Krieg

Follicular thyroid cancer’s (FTC) excellent long-term prognosis is mainly dependent on postoperative radioactive iodine (RAI) treatment. However, once the tumour becomes refractory, the 10-year disease-specific survival rate drops below 10%. The aim of our study was to evaluate the prognostic and biological role of the TRAIL system in FTC and to elucidate the influence of small-molecule-mediated antagonisation of inhibitor of apoptosis proteins (IAPs) on TRAIL sensitivity in vitro. Tissue microarrays were constructed from forty-four patients with histologically confirmed FTC. Expression levels of TRAIL and its receptors were correlated with clinicopathological data and overall as well as recurrence-free survival. Non-iodine-retaining FTC cell lines TT2609-bib2 and FTC133 were treated with recombinant human TRAIL alone and in combination with Smac mimetics GDC-0152 or Birinapant. TRAIL-R2/DR5 as well as TRAIL-R3/DcR1 and TRAIL-R4/DcR2 were significantly higher expressed in advanced tumour stages. Both decoy receptors were negatively associated with recurrence-free and overall survival. TRAIL-R4/DcR2 additionally proved to be an independent negative prognostic marker in FTC (HR = 1.446, 95% CI: 1.144–1.826; P < 0.001). In vitro, the co-incubation of Birinapant or GDC-0152 with rh-TRAIL-sensitised FTC cell lines for TRAIL-induced apoptosis, through degradation of cIAP1/2. The TRAIL system plays an important role in FTC tumour biology. Its decoy receptors are associated with poor prognosis as well as earlier recurrence. The specific degradation of cIAP1/2 sensitises FTC cells to TRAIL-induced apoptosis and might highlight a new point of attack in patients with RAI refractory disease.

Free access

D Deandreis, A Al Ghuzlan, S Leboulleux, L Lacroix, J P Garsi, M Talbot, J Lumbroso, E Baudin, B Caillou, J M Bidart, and M Schlumberger

The aim of this study is to search for relationships between histology, radioiodine (131I) uptake, fluorodeoxyglucose (FDG) uptake, and disease outcome in patients with metastatic thyroid cancer. Eighty patients with metastatic thyroid cancer (34 males, 46 females, mean age at the time of the diagnosis of metastases: 55 years) were retrospectively studied. All patients were treated with radioactive iodine and evaluated by FDG-positron emission tomography (PET). Primary tumor tissue sample was available in all cases. Forty-five patients (56%) had a papillary, 12 (15%) a follicular, and 23 (29%) a poorly differentiated thyroid cancer. Cellular atypias, necrosis, mitoses, thyroid capsule infiltration, and vascular invasion were frequently detected (70, 44, 52, 60, and 71% respectively). Metastases disclosed FDG uptake in 58 patients (72%) and 131I uptake in 37 patients (45%). FDG uptake was the only significant prognostic factor for survival (P=0.02). The maximum standardized uptake value and the number of FDG avid lesions were also related to prognosis (P=0.03 and 0.009). Age at the time of the diagnosis of metastases (P=0.001) and the presence of necrosis (P=0.002) were independent predictive factors of FDG uptake. Radioiodine uptake was prognostic for stable disease (P=0.001) and necrosis for progressive disease at 1 year (P=0.001). Histological subtype was not correlated with in vivo tumor metabolism and prognosis. In conclusion, FDG uptake in metastatic thyroid cancer is highly prognostic for survival. Histological subtype alone does not correlate with 131I/FDG uptake pattern and patient outcome. Well-differentiated thyroid cancer presenting histological features such as necrosis and FDG uptake on PET scan should be considered aggressive differentiated cancers.