Search Results

You are looking at 71 - 80 of 183 items for

  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Follicular x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

Kirk Jensen, Aneeta Patel, Joanna Klubo-Gwiezdzinska, Andrew Bauer, and Vasyl Vasko

Resistance to anoikis (matrix deprivation-induced apoptosis) is a critical component of the metastatic cascade. Molecular mechanisms underlying resistance to anoikis have not been reported in thyroid cancer cells. For an in vitro model of anoikis, we cultured follicular, papillary, and anaplastic thyroid cancer cell lines on poly-HEMA-treated low-adherent plates. We also performed immunohistochemical analysis of human cancer cells that had infiltrated blood and/or lymphatic vessels. Matrix deprivation was associated with establishment of contacts between floating thyroid cancer cells and formation of multi-cellular spheroids. This process was associated with activation of gap junctional transfer. Increased expression of the gap junction molecule Connexin43 was found in papillary and anaplastic cancer cells forming spheroids. All non-adherent cancer cells showed a lower proliferation rate compared with adherent cells but were more resistant to serum deprivation. AKT was constitutively activated in cancer cells forming spheroids. Inhibition of gap junctional transfer through Connexin43 silencing, or by treatment with the gap junction disruptor carbenoxolone, resulted in loss of pAKT and induction of apoptosis in a cell-type-specific manner. In human thyroid tissue, cancer cells that had infiltrated blood vessels showed morphological similarity to cancer cells forming spheroids in vitro. Intra-vascular cancer cells demonstrated prominent AKT activation in papillary and follicular cancers. Increased Connexin43 immunoreactivity was observed only in intra-vascular papillary cancer cells. Our data demonstrate that establishment of inter-cellular communication contributes to thyroid cancer cell resistance to anoikis. These findings suggest that disruption of gap junctional transfer could represent a potential therapeutic strategy for prevention of metastases.

Free access

Jaume Capdevila, Lara Iglesias, Irene Halperin, Ángel Segura, Javier Martínez-Trufero, Maria Ángeles Vaz, Jesús Corral, Gabriel Obiols, Enrique Grande, Juan Jose Grau, and Josep Tabernero

Although thyroid cancer usually has an excellent prognosis, few therapeutic options are available in the refractory setting. Based on the recent results of phase II studies with tyrosine kinase inhibitors, we designed a retrospective analysis of patients with metastatic thyroid cancer treated with sorafenib in seven Spanish referral centers. Consecutive patients with progressive metastatic thyroid cancer (papillary, follicular, medullary, and anaplastic) not suitable for curative surgery, radioactive-iodine therapy, or radiotherapy were treated with sorafenib 400 mg twice a day. The primary end point was objective response rate (RR). Secondary end points included toxicity, median progression-free survival (mPFS), median overall survival (mOS), and correlation between tumor marker levels (thyroglobulin, calcitonin, and carcinoembryonic antigen) and efficacy. Between June 2006 and January 2010, 34 patients were included in the study. Sixteen patients presented differentiated thyroid carcinomas (DTC) of which seven (21%) were papillary, nine (26%) follicular, 15 (44%) medullary (MTC), and three (9%) were anaplastic (ATC). Eleven (32%) patients achieved partial response and 14 (41%) had stable disease beyond 6 months. Regarding histological subtype, RRs were 47% (seven of 15) for MTC, 19% (three of 16) for DTC, and 33% (one of three) for ATC. With a median follow-up of 11.5 months, mPFS were 13.5, 10.5, and 4.4 months for DTC, MTC, and ATC respectively. Tumor markers were evaluated in 22 patients, and a statistically significant association was observed between RR and decrease in tumor marker levels >50% (P=0.033). In this retrospective trial, sorafenib showed antitumor efficacy in all histological subtypes of thyroid cancer, warranting further development in this setting.

Free access

Branca M Cavaco, Pedro F Batista, Carmo Martins, Ana Banito, Francisco do Rosário, Edward Limbert, Luís G Sobrinho, and Valeriano Leite

Linkage analysis has identified four familial non-medullary thyroid carcinoma (FNMTC) susceptibility loci: fPTC/PRN (1p13.2-1q22), NMTC1 (2q21), MNG1 (14q32) and TCO (19p13.2). To date, there is no evidence for the involvement of genes from the RAS/RAF signalling pathway in FNMTC. The aim of our study was to evaluate the role of the four susceptibility loci, and RAS/RAF signalling pathway genes, in FNMTC. In total, 8 FNMTC families, and 27 thyroid lesions from family members (22 papillary thyroid carcinomas (PTCs): 11 classic, 10 of the follicular variant and 1 of the mixed variant; 4 follicular thyroid adenomas (FTAs) and 1 nodular goitre (NG)), were evaluated for the involvement of the four susceptibility regions, using linkage and loss of heterozygosity (LOH) analyses. BRAF and H-, N- and K-RAS mutations were also screened in the 27 lesions and patients. Linkage analysis in seven informative families showed no evidence for the involvement of any of the four candidate regions, supporting a genetic heterogeneity for FNMTC. Twenty tumours (74%), of which 18 were PTCs, showed no LOH at the four susceptibility loci. The remaining seven tumours (four PTCs, two FTAs and one NG) showed variable patterns of LOH. Fourteen tumours (52%) had somatic mutations: BRAF-V600E mutation was observed in 9 out of the 22 PTCs (41%); and H-RAS and N-RAS mutations were detected in 5 out of the 22 PTCs (23%). Our data suggest that the four candidate regions are not frequently involved in FNMTC and that the somatic activation of BRAF and RAS plays a role in FNMTC tumourigenesis.

Free access

J D Lin, M J Liou, T C Chao, H F Weng, and Y S Ho

From 1977 through 1995, 1,013 thyroid carcinoma patients received treatment and were followed up at Chang Gung Medical Center in Taiwan. To evaluate the prognostic variables of papillary and follicular thyroid carcinomas with limited lymph node metastases, a retrospective review of these patients was performed. Of these patients, 910 had papillary or follicular thyroid carcinoma, and 119 patients were categorized as clinical stage 2 with limited neck lymph node metastases only at the time of diagnosis. The patients were categorized into two groups as no recurrence and local recurrence or distant metastasis at the end of 1997. After the operations, radioactive iodide (131I) treatments were performed in 114 patients and external radiotherapy for neck region or distant metastases in 18 patients. The median follow-up period of these patients was 5.4 years. Clinical variables were coded in our computer for statistical analysis. After the treatments, 93 patients remained disease-free; 10 were in stage 2; 5 in stage 3; and 11 aggravated to stage 4. Of the clinical variables, age, post-operative first 1311 uptake scans, and 1-month post-operative thyroglobulin levels revealed statistically significant differences between the group which improved and the group which did not. During the follow-up period, five patients died; three patients died of thyroid cancer and two died of intercurrent diseases. Patients with papillary thyroid carcinoma revealed a higher percentage of lymph node metastases. Although limited lymph node metastases did not influence survival rate, patients with poor prognostic factors need more aggressive treatment to avoid progression of the cancer.

Free access

Xiaoli Liu, Justin Bishop, Yuan Shan, Sara Pai, Dingxie Liu, Avaniyapuram Kannan Murugan, Hui Sun, Adel K El-Naggar, and Mingzhao Xing

Mutations 1 295 228 C>T and 1 295 250 C>T (termed C228T and C250T respectively), corresponding to −124 C>T and −146 C>T from the translation start site in the promoter of the telomerase reverse transcriptase (TERT) gene, have recently been reported in human cancers, but not in thyroid cancers yet. We explored these mutations in thyroid cancers by genomic sequencing of a large number of primary tumor samples. We found the C228T mutation in 0 of 85 (0.0%) benign thyroid tumors, 30 of 257 (11.7%) papillary thyroid cancers (PTC), 9 of 79 (11.4%) follicular thyroid cancers (FTC), 3 of 8 (37.5%) poorly differentiated thyroid cancers (PDTC), 23 of 54 (42.6%) anaplastic thyroid cancers (ATC), and 8 of 12 (66.7%) thyroid cancer cell lines. The C250T mutation was uncommon, but mutually exclusive with the C228T mutation, and the two mutations were collectively found in 11 of 79 (13.9%) FTC, 25 of 54 (46.3%) ATC, and 11 of 12 (91.7%) thyroid cancer cell lines. Among PTC variants, the C228T mutation was found in 4 of 13 (30.8%) tall-cell PTC (TCPTC), 23 of 187 (12.3%) conventional PTC, and 2 of 56 (3.6%) follicular variant PTC samples. No TERT mutation was found in 16 medullary thyroid cancer samples. The C228T mutation was associated with the BRAF V600E mutation in PTC, being present in 19 of 104 (18.3%) BRAF mutation-positive PTC vs 11 of 153 (7.2%) the BRAF mutation-negative PTC samples (P=0.0094). Conversely, BRAF mutation was found in 19 of 30 (63.3%) C228T mutation-positive PTC vs 85 of 227 (37.4%) C228T mutation-negative PTC samples (P=0.0094). We thus for the first time, to our knowledge, demonstrate TERT promoter mutations in thyroid cancers, that are particularly prevalent in the aggressive thyroid cancers TCPTC, PDTC, ATC and BRAF mutation-positive PTC, revealing a novel genetic background for thyroid cancers.

Restricted access

J M Gómez, N Gómez, M Sahún, A Rafecas, C Villabona, and J Soler

Abstract

Despite the usual excellent prognosis of differentiated thyroid carcinoma, some patients die because of disease. It has been speculated that lethal disease may have a better prognosis if patients are treated with extensive surgery plus 131I ablative treatment. We have analyzed a group of 223 patients with differentiated thyroid carcinoma treated under a uniform therapeutic protocol of surgery and followed for 3 to 17.7 years, in order to differentiate patients with a high and a low risk of mortality and the influence of therapy on survival rate.

The therapeutic protocol was as follows. If the diagnosis was papillary carcinoma, subtotal thyroidectomy was performed and cervical nodes were removed if they were suspicious for cancer. If the diagnosis was follicular carcinoma, a total thyroidectomy was performed. 131I was given in cases of patients who were more than 60 years old or who had extrathyroid disease or metastases in papillary carcinomas and in macroangioinvasive follicular carcinomas. In survival analysis, the event used as the end-point was death due to thyroid carcinoma and summarized by the Kaplan-Meier curve and the Mantel-Cox method.

We found three independent prognostic factors which determined mortality: over 60 years of age, tumor size larger than 6 cm and metastases. On the basis of these factors we identified two risk groups: a low-risk group (A), who had no risk factors, composed of 153 patients whose survival rate at 205 months was 100% and a high-risk group (B), who had one or more risk factors, composed of 55 patients whose survival rate at 213 months was 39.6%. Seventeen patients in this second group died from thyroid carcinoma. We therefore analyzed the effect of treatment in group B. Patients who had more extensive surgery had a similar survival rate to those who had less extensive surgery and 131I administration did not modify the survival rate.

These data support the idea that the identification of low-risk groups may facilitate a more rational approach to treatment of differentiated thyroid carcinoma, avoiding aggressive therapy in cases with a good prognosis.

Endocrine-Related Cancer (1997) 4 459-464

Free access

Aruna V Krishnan and David Feldman

Calcitriol, the hormonally active form of vitamin D, exerts multiple anti-proliferative and pro-differentiating actions including cell cycle arrest and induction of apoptosis in many malignant cells, and the hormone is currently being evaluated in clinical trials as an anti-cancer agent. Recent research reveals that calcitriol also exhibits multiple anti-inflammatory effects. First, calcitriol inhibits the synthesis and biological actions of pro-inflammatory prostaglandins (PGs) by three mechanisms: i) suppression of the expression of cyclooxygenase-2, the enzyme that synthesizes PGs; ii) up-regulation of the expression of 15-hydroxyprostaglandin dehydrogenase, the enzyme that inactivates PGs; and iii) down-regulation of the expression of PG receptors that are essential for PG signaling. The combination of calcitriol and nonsteroidal anti-inflammatory drugs results in a synergistic inhibition of the growth of prostate cancer (PCa) cells and offers a potential therapeutic strategy for PCa. Second, calcitriol increases the expression of mitogen-activated protein kinase phosphatase 5 in prostate cells resulting in the subsequent inhibition of p38 stress kinase signaling and the attenuation of the production of pro-inflammatory cytokines. Third, calcitriol also exerts anti-inflammatory activity in PCa through the inhibition of nuclear factor-κB signaling that results in potent anti-inflammatory and anti-angiogenic effects. Other important direct effects of calcitriol as well as the consequences of its anti-inflammatory effects include the inhibition of tumor angiogenesis, invasion, and metastasis. We hypothesize that these anti-inflammatory actions, in addition to the other known anti-cancer effects of calcitriol, play an important role in its potential use as a therapeutic agent for PCa. Calcitriol or its analogs may have utility as chemopreventive agents and should be evaluated in clinical trials in PCa patients with early or precancerous disease.

Free access

David Viola, Laura Valerio, Eleonora Molinaro, Laura Agate, Valeria Bottici, Agnese Biagini, Loredana Lorusso, Virginia Cappagli, Letizia Pieruzzi, Carlotta Giani, Elena Sabini, Paolo Passannati, Luciana Puleo, Antonio Matrone, Benedetta Pontillo-Contillo, Valentina Battaglia, Salvatore Mazzeo, Paolo Vitti, and Rossella Elisei

Abstract

Thyroid cancer is rare, but it is the most frequent endocrine malignancy. Its prognosis is generally favorable, especially in cases of well-differentiated thyroid cancers (DTCs), such as papillary and follicular cancers, which have survival rates of approximately 95% at 40 years. However, 15–20% of cases became radioiodine refractory (RAI-R), and until now, no other treatments have been effective. The same problems are found in cases of poorly differentiated (PDTC) and anaplastic (ATC) thyroid cancers and in at least 30% of medullary thyroid cancer (MTC) cases, which are very aggressive and not sensitive to radioiodine. Tyrosine kinase inhibitors (TKIs) represent a new approach to the treatment of advanced cases of RAI-R DTC, MTC, PDTC, and, possibly, ATC. In the past 10 years, several TKIs have been tested for the treatment of advanced, progressive, and RAI-R thyroid tumors, and some of them have been recently approved for use in clinical practice: sorafenib and lenvatinib for DTC and PDTC and vandetanib and cabozantinib for MTC. The objective of this review is to present the current status of the treatment of advanced thyroid cancer with the use of innovative targeted therapies by describing both the benefits and the limits of their use based on the experiences reported so far. A comprehensive analysis and description of the molecular basis of these therapies, as well as new therapeutic perspectives, are reported. Some practical suggestions are given for both the choice of patients to be treated and their management, with particular regard to the potential side effects.

Free access

M M Muresan, P Olivier, J Leclère, F Sirveaux, L Brunaud, M Klein, R Zarnegar, and G Weryha

The presence of distant metastases from differentiated thyroid carcinoma decreases the 10-year survival of patients by 50%. Bone metastases represent a frequent complication especially of follicular thyroid cancer and severely reduce the quality of life causing pain, fractures, and spinal cord compression. Diagnosis is established by correlating clinical suspicion with imaging. Imaging is essential to detect, localize, and assess the extension of the lesions and should be used in conjunction with clinical evidence. Bone metastases are typically associated with elevated markers of bone turnover, but these markers have not been evaluated in differentiated thyroid cancer. Skeletal and whole-body magnetic resonance imaging and fusion 2-deoxy-2-[18F]fluoro-d-glucose whole-body positron emission tomography/computed tomography (PET/CT) are the best anatomic and functional imaging techniques available in specialized centers. For well-differentiated lesions, iodine-PET scan combined 124I-PET/CT is the newest imaging development and 131I is the first line of treatment. Bisphosphonates reduce the complications rate and pain, alone or in combination with radioiodine, radionuclides, or external beam radiotherapy and should be employed. Surgery and novel minimally invasive consolidation techniques demand an appropriate patient selection for best results on a multimodal approach. Basic research on interactions between tumor cells and bone microenvironment are identifying potential novel targets for future more effective therapeutic interventions for less differentiated tumors.

Free access

Caterina Tiozzo, Soula Danopoulos, Maria Lavarreda-Pearce, Sheryl Baptista, Radka Varimezova, Denise Al Alam, David Warburton, Rehan Virender, Stijn De Langhe, Antonio Di Cristofano, Saverio Bellusci, and Parviz Minoo

Even though the role of the tyrosine phosphatase Pten as a tumor suppressor gene has been well established in thyroid cancer, its role during thyroid development is still elusive. We therefore targeted Pten deletion in the thyroid epithelium by crossing Pten flox/flox with a newly developed Nkx2.1-cre driver line in the BALB/c and C57BL/6 genetic backgrounds. C57BL/6 homozygous Pten mutant mice died around 2 weeks of age due to tracheal and esophageal compression by a hyperplasic thyroid. By contrast, BALB/c homozygous Pten mutant mice survived up to 2 years, but with a slightly increased thyroid volume. Characterization of the thyroid glands from C57BL/6 homozygous Pten mutant mice at postnatal day 14 (PN14) showed abnormally enlarged tissue with areas of cellular hyperplasia, disruption of the normal architecture, and follicular degeneration. In addition, differing degrees of hypothyroidism, thyroxine (T4) decrease, and thyroid-stimulating hormone elevation between the strains in the mutants and the heterozygous mutant were detected at PN14. Finally, C57BL/6 heterozygous Pten mutant mice developed thyroid tumors after 2 years of age. Our results indicate that Pten has a pivotal role in thyroid development and its deletion results in thyroid tumor formation, with the timing and severity of the tumor depending on the particular genetic background.