Search Results

You are looking at 81 - 86 of 86 items for

  • Abstract: Calcium x
  • Abstract: Vitamin D x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Free access

Giulia Masi, Luisa Barzon, Maurizio Iacobone, Giovanni Viel, Andrea Porzionato, Veronica Macchi, Raffaele De Caro, Gennaro Favia, and Giorgio Palù

CDC73 (HRPT2) germline mutations are responsible for more than half of cases of hyperparathyroidism-jaw tumor syndrome (HPT-JT) and for a subset of familial isolated HPT (FIHP). We performed a clinical, genetic, and histopathologic study in three unrelated Italian kindreds with HPT-JT and FIHP. We identified three germline inactivating mutations of the CDC73 gene in the probands and affected patients of the three kindreds, but also in some asymptomatic subjects. HPT-JT and FIHP patients had similar laboratory, clinical, and demographic features and shared primary HPT and other neoplasms, the most common of which was uterine polyposis. Genetic analysis of tumor samples demonstrated a second somatic CDC73 mutation only in a parathyroid adenoma and no cases with the loss of the wild-type allele or methylation of the CDC73 promoter, even though immunohistochemical analysis demonstrated the loss of nuclear parafibromin expression in all tumors, including a uterine polyp. In conclusion, our results indicate that FIHP and HPT-JT associated with CDC73 mutations do not have distinct clinical, genetic, and histopathologic features, but may represent variants of the same genetic disease. This study also confirms that uterine involvement represents a clinical manifestation of the syndrome.

Free access

Dorota Dworakowska and Ashley B Grossman

Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder characterised by the development of multiple hamartomas in numerous organs. It is caused by mutations of two tumour suppressor genes, TSC1 on chromosome 9q34 and TSC2 on chromosome 16p13.3, which encode for hamartin and tuberin respectively. The interaction between these two proteins, the tuberin–hamartin complex, has been shown to be critical to multiple intracellular signalling pathways, especially those controlling cell growth and proliferation. TSC may affect skin, central nervous system, kidneys, heart, eyes, blood vessels, lung, bone and gastrointestinal tract. Small series and case reports have documented that in tuberous sclerosis patients many endocrine system alterations might occur, affecting the function of the pituitary, parathyroid and other neuroendocrine tissue. There have been scattered reports of the involvement of such tissue in the pathological process of TSC, but no systematic review as to whether this is a true association. We have therefore systematically assessed all available published literature in this area. We conclude that there may be an association with pituitary and parathyroid tumours, and two recent descriptions of Cushing's disease are especially intriguing. However, the evidence seems more firm in the case of islet cell tumours, particularly insulinomas. As these latter may cause changes in mental state that may be confused with the cerebral manifestations of TSC per se, it is particularly important for physicians working with these patients to be aware of the putative and indeed likely association.

Free access

Anna Angelousi, Georgios K Dimitriadis, Georgios Zografos, Svenja Nölting, Gregory Kaltsas, and Ashley Grossman

Tumourigenesis is a relatively common event in endocrine tissues. Currently, specific guidelines have been developed for common malignant endocrine tumours, which also incorporate advances in molecular targeted therapies (MTT), as in thyroid cancer and in gastrointestinal neuroendocrine malignancies. However, there is little information regarding the role and efficacy of MTT in the relatively rare malignant endocrine tumours mainly involving the adrenal medulla, adrenal cortex, pituitary, and parathyroid glands. Due to the rarity of these tumours and the lack of prospective studies, current guidelines are mostly based on retrospective data derived from surgical, locoregional and ablative therapies, and studies with systemic chemotherapy. In addition, in many of these malignancies the prognosis remains poor with individual patients responding differently to currently available treatments, necessitating the development of new personalised therapeutic strategies. Recently, major advances in the molecular understanding of endocrine tumours based on genomic, epigenomic, and transcriptome analysis have emerged, resulting in new insights into their pathogenesis and molecular pathology. This in turn has led to the use of novel MTTs in increasing numbers of patients. In this review, we aim to present currently existing and evolving data using MTT in the treatment of adrenal, pituitary and malignant parathyroid tumours, and explore the current utility and effectiveness of such therapies and their future evolution.

Free access

S Corbetta, V Vaira, V Guarnieri, A Scillitani, C Eller-Vainicher, S Ferrero, L Vicentini, I Chiodini, M Bisceglia, P Beck-Peccoz, S Bosari, and A Spada

Parathyroid carcinoma (PaC) is a rare cause of primary hyperparathyroidism. Though the loss of the oncosuppressor CDC73/HRPT2 gene product, parafibromin, has been involved in the hyperparathyroidism–jaw tumor syndrome and in a consistent set of sporadic PaCs, parathyroid carcinogenesis remains obscure. MicroRNAs are a new class of small, non-coding RNAs implicated in development of cancer, since their deregulation can induce aberrant expression of several target genes. The aim of the present study was to identify differentially expressed microRNAs in parathyroid cancers compared with normal tissues. We performed a TaqMan low-density array profiling of four parathyroid cancers harboring CDC73 inactivating mutations and negative for parafibromin immunostaining. Their microRNA profiling was compared with that of two normal parathyroid biopsies. Out of 362 human microRNAs assayed, 279 (77%) were successfully amplified. Fourteen and three microRNAs were significantly down- and over-expressed in parathyroid cancers respectively. Of these, miR-296 and miR-139 were down-regulated, and miR-503 and miR-222 were over-expressed with a null false discovery rate. Carcinomas could be discriminated from parathyroid adenomas by a computed score based on the expression levels of miR-296, miR-222, and miR-503 as miR-139 was similarly down-regulated in both cancers and adenomas. Finally, miR-296 and miR-222 levels negatively correlated with mRNA levels of the hepatocyte growth factor receptor-regulated tyrosine kinase substrate and p27/kip1 levels respectively. These results suggest the existence of an altered microRNA expression pattern in PaCs together with a potential role of miR-296 as novel oncosuppressor gene in these neoplasia.

Free access

C C Juhlin, A Villablanca, K Sandelin, F Haglund, J Nordenström, L Forsberg, R Bränström, T Obara, A Arnold, C Larsson, and A Höög

Parafibromin is a protein product derived from the hyperparathyroidism 2(HRPT2) tumor suppressor geneand its inactivation has been coupled to familial and sporadic forms of parathyroid malignancy. In this study, we have conducted immunohistochemistry on 33 parathyroid carcinomas (22 unequivocal and 11 equivocal) using four parafibromin antibodies directed to different parts of the protein. Furthermore, for a fraction of cases, the immunohistochemical results were compared with known HRPT2 mutational status. Our findings show that 68% (15 out of 22) of the unequivocal carcinomas exhibited reduced expression of parafibromin while the 25 sporadic adenomas used as controls were entirely positive for parafibromin expression. Additionally, three out of the six carcinomas with known HRPT2 mutations showed reduced expression of parafibromin. Using all four antibodies, comparable results were obtained on the cellular level in individual tumors suggesting that there exists no epitope of choice in parafibromin immunohistochemistry. The results agree with the demonstration of a ~60 kDa product preferentially in the nuclear fraction by western blot analysis. We conclude that parafibromin immunohistochemistry could be used as an additional marker for parathyroid tumor classification, where positive samples have low risk of malignancy, whereas samples with reduced expression could be either carcinomas or rare cases of adenomas likely carrying an HRPT2 mutation.

Free access

Kerong Shi, Vaishali I Parekh, Swarnava Roy, Shruti S Desai, and Sunita K Agarwal

The multiple endocrine neoplasia type 1 (MEN1) syndrome is caused by germline mutations in the MEN1 gene encoding menin, with tissue-specific tumors of the parathyroids, anterior pituitary, and enteropancreatic endocrine tissues. Also, 30–40% of sporadic pancreatic endocrine tumors show somatic MEN1 gene inactivation. Although menin is expressed in all cell types of the pancreas, mouse models with loss of menin in either pancreatic α-cells, or β-cells, or total pancreas develop β-cell-specific endocrine tumors (insulinomas). Loss of widely expressed tumor suppressor genes may produce tissue-specific tumors by reactivating one or more embryonic-specific differentiation factors. Therefore, we determined the effect of menin overexpression or knockdown on the expression of β-cell differentiation factors in a mouse β-cell line (MIN6). We show that the β-cell differentiation factor Hlxb9 is posttranscriptionally upregulated upon menin knockdown, and it interacts with menin. Hlxb9 reduces cell proliferation and causes apoptosis in the presence of menin, and it regulates genes that modulate insulin level. Thus, upon menin loss or from other causes, dysregulation of Hlxb9 predicts a possible combined mechanism for β-cell proliferation and insulin production in insulinomas. These observations help to understand how a ubiquitously expressed protein such as menin might control tissue-specific tumorigenesis. Also, our findings identify Hlxb9 as an important factor for β-cell proliferation and insulin regulation.