Search Results

You are looking at 1 - 10 of 305 items for

  • Abstract: RET x
  • Abstract: Neuroendocrine x
  • All content x
Clear All Modify Search
Free access

Matti L Gild, Iñigo Landa, Mabel Ryder, Ronald A Ghossein, Jeffrey A Knauf, and James A Fagin

Inhibitors of RET, a tyrosine kinase receptor encoded by a gene that is frequently mutated in medullary thyroid cancer, have emerged as promising novel therapies for the disease. Rapalogs and other mammalian target of rapamycin (mTOR) inhibitors are effective agents in patients with gastroenteropancreatic neuroendocrine tumors, which share lineage properties with medullary thyroid carcinomas. The objective of this study was to investigate the contribution of mTOR activity to RET-induced signaling and cell growth and to establish whether growth suppression is enhanced by co-targeting RET and mTOR kinase activities. Treatment of the RET mutant cell lines TT, TPC-1, and MZ-CRC-1 with AST487, a RET kinase inhibitor, suppressed growth and showed profound and sustained inhibition of mTOR signaling, which was recapitulated by siRNA-mediated RET knockdown. Inhibition of mTOR with INK128, a dual mTORC1 and mTORC2 kinase inhibitor, also resulted in marked growth suppression to levels similar to those seen with RET blockade. Moreover, combined treatment with AST487 and INK128 at low concentrations suppressed growth and induced apoptosis. These data establish mTOR as a key mediator of RET-mediated cell growth in thyroid cancer cells and provide a rationale for combinatorial treatments in thyroid cancers with oncogenic RET mutations.

Free access

Viktor Johanson, Håkan Ahlman, Peter Bernhardt, Svante Jansson, Lars Kölby, Fredrik Persson, Göran Stenman, Christina Swärd, Bo Wängberg, Mats Stridsberg, and Ola Nilsson

Hereditary medullary thyroid carcinoma (MTC) is caused by germline mutations in the RET proto-oncogene, resulting in constitutive activation of the RET tyrosine kinase. A substantial proportion of sporadic MTCs also have RET mutations, making the RET tyrosine kinase a potential therapeutic target in MTC. We have established a transplantable MTC in nude mice from a sporadic human MTC carrying a RET C634R mutation. Transplanted tumors had an exponential growth rate with an approximate doubling time of about 3 weeks, and expressed a neuroendocrine phenotype characteristic of MTC, e.g., expression of calcitonin, chromogranin A (CgA), synaptophysin, synaptic vesicle protein 2 (SV2), vesicular monoamine transporter-1 and -2, carcinoembryonic antigen, cytokeratin 8/18, epithelial cadherin, and neural cell adhesion molecule. Plasma calcitonin and CgA levels were elevated in tumor-bearing mice and correlated with tumor size. Cytogenetic analysis, including spectral karyotyping, confirmed the human origin of the xenografted tumors and demonstrated an abnormal, near triploid karyotype. Treatment of tumor-bearing nude mice with the tyrosine kinase inhibitor ZD6474, which specifically inhibits RET, epidermal growth factor receptor (EGFR), and vascular endothelium growth factor receptor (VEGFR) tyrosine kinases, resulted in a dose-dependent inhibition of tumor growth. Oral ZD6474 given once daily (250 mg/kg, 5 days/week) reduced tumor volume to 11% when compared with controls after 4 weeks. Our results show that this transplantable MTC, designated GOT2, represents a novel and useful model for studies of MTC and RET tyrosine kinase-dependent tumor growth.

Free access

Aguirre A de Cubas, L Javier Leandro-García, Francesca Schiavi, Veronika Mancikova, Iñaki Comino-Méndez, Lucía Inglada-Pérez, Manuel Perez-Martinez, Nuria Ibarz, Pilar Ximénez-Embún, Elena López-Jiménez, Agnieszka Maliszewska, Rocío Letón, Álvaro Gómez Graña, Carmen Bernal, Cristina Álvarez-Escolá, Cristina Rodríguez-Antona, Giuseppe Opocher, Javier Muñoz, Diego Megias, Alberto Cascón, and Mercedes Robledo

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare neuroendocrine neoplasias of neural crest origin that can be part of several inherited syndromes. Although their mRNA profiles are known to depend on genetic background, a number of questions related to tumor biology and clinical behavior remain unanswered. As microRNAs (miRNAs) are key players in the modulation of gene expression, their comprehensive analysis could resolve some of these issues. Through characterization of miRNA profiles in 69 frozen tumors with germline mutations in the genes SDHD, SDHB, VHL, RET, NF1, TMEM127, and MAX, we identified miRNA signatures specific to, as well as common among, the genetic groups of PCCs/PGLs. miRNA expression profiles were validated in an independent series of 30 composed of VHL-, SDHB-, SDHD-, and RET-related formalin-fixed paraffin-embedded PCC/PGL samples using quantitative real-time PCR. Upregulation of miR-210 in VHL- and SDHB-related PCCs/PGLs was verified, while miR-137 and miR-382 were confirmed as generally upregulated in PCCs/PGLs (except in MAX-related tumors). Also, we confirmed overexpression of miR-133b as VHL-specific miRNAs, miR-488 and miR-885-5p as RET-specific miRNAs, and miR-183 and miR-96 as SDHB-specific miRNAs. To determine the potential roles miRNAs play in PCC/PGL pathogenesis, we performed bioinformatic integration and pathway analysis using matched mRNA profiling data that indicated a common enrichment of pathways associated with neuronal and neuroendocrine-like differentiation. We demonstrated that miR-183 and/or miR-96 impede NGF-induced differentiation in PC12 cells. Finally, global proteomic analysis in SDHB and MAX tumors allowed us to determine that miRNA regulation occurs primarily through mRNA degradation in PCCs/PGLs, which partially confirmed our miRNA–mRNA integration results.

Free access

Eva-Maria Duerr, Yusuke Mizukami, Aylwin Ng, Ramnik J Xavier, Hirotoshi Kikuchi, Vikram Deshpande, Andrew L Warshaw , Jonathan Glickman, Matthew H Kulke, and Daniel C Chung

Current classifications of human gastroenteropancreatic neuroendocrine tumors (NETs) are inconsistent and based upon histopathologic but not molecular features. We sought to compare a molecular classification with the World Health Organization (WHO) histologic classification, identify genes that may be important for tumor progression, and determine whether gastrointestinal NETs (GI-NETs) differ in their molecular profile from pancreatic NETs (PNETs). DNA microarray analysis was performed to identify differentially expressed genes in PNETs and GI-NETs. Confirmation of expression levels was obtained by quantitative real-time PCR. Immunoblotting and mutational analysis were performed for selected genes. Hierarchical clustering of 19 PNETs revealed a ‘benign’ and ‘malignant’ cluster that corresponded well with the WHO categories of well-differentiated endocrine tumor (WDET) and well-differentiated endocrine carcinoma (WDEC) respectively. FEV, adenylate cyclase 2 (ADCY2), nuclear receptor subfamily 4, group A, member 2 (NR4A2), and growth arrest and DNA-damage-inducible, beta (GADD45b) were the most highly up-regulated genes in the malignant group of PNETs. Platelet-derived growth factor receptor (PDGFR) was expressed in both WDETs and WDECs, and phosphorylation of PDGFR-β was observed in 83% of all PNETs. Malignant ileal GI-NETs exhibited a distinctive gene expression profile, and extracellular matrix protein 1 (ECM), vesicular monoamine member 1 (VMAT1), galectin 4 (LGALS4), and RET Proto-oncogene (RET) were highly up-regulated genes. Gene expression profiles reflect the current WHO classification and can distinguish benign from malignant PNETs and also PNETs from GI-NETs. This suggests that molecular profiling may enhance tumor classification schemes. Potential gene targets have also been identified, and PDGFR and RET are candidates that may represent novel therapeutic targets.

Free access

Eric Y Lian, Sarah M Maritan, Jessica G Cockburn, Katayoon Kasaian, Mathieu J F Crupi, David Hurlbut, Steven J M Jones, Sam M Wiseman, and Lois M Mulligan

The RET receptor tyrosine kinase mediates cell proliferation, survival and migration in embryogenesis and is implicated in the transformation and tumour progression in multiple cancers. RET is frequently mutated and constitutively activated in familial and sporadic thyroid carcinomas. As a result of alternative splicing, RET is expressed as two protein isoforms, RET9 and RET51, which differ in their unique C-terminal amino acids. These isoforms have distinct intracellular trafficking and associated signalling complexes, but functional differences are not well defined. We used shRNA-mediated knockdown (KD) of individual RET isoforms or of total RET to evaluate their functional contributions in thyroid carcinoma cells. We showed that RET is required for cell survival in medullary (MTC) but not papillary thyroid carcinoma (PTC) cells. In PTC cells, RET depletion reduced cell migration and induced a flattened epithelial-like morphology. RET KD decreased the expression of mesenchymal markers and matrix metalloproteinases and reduced anoikis resistance and invasive potential. Further, we showed that RET51 depletion had significantly greater effects on each of these processes than RET9 depletion in both MTC and PTC cells. Finally, we showed that expression of RET, particularly RET51, was correlated with malignancy in a panel of human thyroid tumour tissues. Together, our data show that RET expression promotes a more mesenchymal phenotype with reduced cell–cell adhesion and increased invasiveness in PTC cell models, but is more important for tumour cell survival, proliferation and anoikis resistance in MTC models. Our data suggest that the RET51 isoform plays a more prominent role in mediating these processes compared to RET9.

Free access

Raffaele Ciampi, Thomas J Giordano, Kathryn Wikenheiser-Brokamp, Ronald J Koenig, and Yuri E Nikiforov

Chromosomal rearrangements of the RET proto-oncogene (RET/PTC) are the common feature of papillary thyroid carcinoma (PTC). In this study, we report the identification, cloning, and functional characterization of a novel type of RET/PTC rearrangement that results from the fusion of the 3′-portion of RET coding for the tyrosine kinase (TK) domain of the receptor to the 5′-portion of the Homo sapiens hook homolog 3 (HOOK3) gene. The novel fusion was identified in a case of PTC that revealed a gene expression signature characteristic of RET/PTC on DNA microarray analysis, but was negative for the most common types of RET rearrangement. A fusion product between exon 11 of HOOK3 and exon 12 of RET gene was identified by 5′RACE, and the presence of chimeric HOOK3-RET protein of 88 kDa was detected by western blot analysis with an anti-RET antibody. The protein is predicted to contain a portion of the coiled-coil domains of HOOK3 and the intact TK domain of RET. Expression of the HOOK3-RET cDNA in NIH3T3 cells resulted in the formation of transformed foci and in tumor formation after injection into nude mice, confirming the oncogenic nature of HOOK3-RET.

Free access

Elizabeth Grubbs, Daniel Halperin, Steven G Waguespack, and Robert F Gagel

The multiple endocrine neoplasia (MEN) workshops had their beginnings at Queen’s University in Kingston, Ontario in June 1984. This initial meeting brought clinicians and scientists together to focus on mapping the gene for multiple endocrine neoplasia type 2 (MEN2). These efforts culminated in the identification of the RET protooncogene as the causative gene a decade later. Over the next 35 years there were a total of 16 international workshops focused on the several MEN syndromes. Importantly, these workshops were instrumental in efforts to define the molecular basis for multiple endocrine neoplasia type 1 (MEN1), MEN2, von Hippel-Lindau disease (VHL), Carney Complex, hereditary pheochromocytoma and hyperparathyroidism. In this same spirit some 150 scientists and clinicians met at MD Anderson Cancer Center, 27–29 March 2019, for the 16th International Workshop on Multiple Endocrine Neoplasia (MEN2019). Appropriate to its location in a cancer centre, the workshop focused on important issues in the causation and treatment of malignant aspects of the MEN syndromes: medullary thyroid carcinoma, pancreatic neuroendocrine tumours, malignant pheochromocytoma and parathyroid carcinoma. Workshops at the meeting focused on a better understanding of how the identified molecular defects in these genetic syndromes lead to transformation, how to apply targeted kinase inhibitors and immunotherapy to treat these tumours and important clinical management issues. This issue of Endocrine-Related Cancer describes these discussions and recommendations.

Free access

Sara Molatore, Andrea Kügler, Martin Irmler, Tobias Wiedemann, Frauke Neff, Annette Feuchtinger, Johannes Beckers, Mercedes Robledo, Federico Roncaroli, and Natalia S Pellegata

Rats affected by the MENX syndrome spontaneously develop multiple neuroendocrine tumors (NETs) including adrenal, pituitary and thyroid gland neoplasms. MENX was initially reported to be inherited as a recessive trait and affected rats were found to be homozygous for the predisposing Cdkn1b mutation encoding p27. We here report that heterozygous MENX-mutant rats (p27+/mut) develop the same spectrum of NETs seen in the homozygous (p27mut/mut) animals but with slower progression. Consequently, p27+/mut rats have a significantly shorter lifespan compared with their wild-type (p27+/+) littermates. In the tumors of p27+/mut rats, the wild-type Cdkn1b allele is neither lost nor silenced, implying that p27 is haploinsufficient for tumor suppression in this model. Transcriptome profiling of rat adrenal (pheochromocytoma) and pituitary tumors having different p27 dosages revealed a tissue-specific, dose-dependent effect of p27 on gene expression. In p27+/mut rats, thyroid neoplasms progress to invasive and metastatic medullary thyroid carcinomas (MTCs) accompanied by increased calcitonin levels, as in humans. Comparison of expression signatures of late-stage vs early-stage MTCs from p27+/mut rats identified genes potentially involved in tumor aggressiveness. The expression of a subset of these genes was evaluated in human MTCs and found to be associated with aggressive RET-M918T-positive tumors. Altogether, p27 haploinsufficiency in MENX rats uncovered a novel, representative model of invasive and metastatic MTC exploitable for translational studies of this often aggressive and incurable cancer.

Free access

Donata Vitagliano, Valentina De Falco, Anna Tamburrino, Sabrina Coluzzi, Giancarlo Troncone, Gennaro Chiappetta, Fortunato Ciardiello, Giampaolo Tortora, James A Fagin, Anderson J Ryan, Francesca Carlomagno, and Massimo Santoro

Oncogenic conversion of the RET tyrosine kinase is a frequent feature of medullary thyroid carcinoma (MTC). ZD6474 (vandetanib) is an ATP-competitive inhibitor of RET, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptors kinases. In this study, we have studied ZD6474 mechanism of action in TT and MZ-CRC-1 human MTC cell lines, carrying cysteine 634 to tryptophan (C634W) and methionine 918 to threonine (M918T) RET mutation respectively. ZD6474 blunted MTC cell proliferation and RET, Shc and p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation. Single receptor knockdown by RNA interference showed that MTC cells depended on RET for proliferation. Adoptive expression of the ZD6474-resistant V804M RET mutant rescued proliferation of TT cells under ZD6474 treatment, showing that RET is a key ZD6474 target in these MTC cells. Upon RET inhibition, adoptive stimulation of EGFR partially rescued TT cell proliferation, MAPK signaling, and expression of cell-cycle-related genes. This suggests that simultaneous inhibition of RET and EGFR by ZD6474 may overcome the risk of MTC cells to escape from RET blockade through compensatory over-activation of EGFR.

Free access

Hugo Prazeres, Joana P Couto, Fernando Rodrigues, João Vinagre, Joana Torres, Vitor Trovisco, Teresa C Martins, Manuel Sobrinho-Simões, and Paula Soares

Multiple endocrine neoplasia type 2 and a subset of apparently sporadic medullary thyroid carcinoma (AS-MTC) are caused by germ line activating point mutations of the rearranged during transfection (RET) proto-oncogene. RET encodes a receptor with tyrosine kinase activity that targets several intracellular signaling cascades, such as RAS–RAF–ERK1/2, PIK3–AKT, and STAT transcription factors. The objective of this study was to assess the function of three germ line RET variants Arg886Trp, Ser649Leu, and Glu511Lys of undetermined pathogenic significance, which were found in three kindreds of isolated AS-MTC. For this purpose, we employed vectors expressing each of the RET variants and measured the number of NIH3T3 transformation foci and soft agar colonies, the degree of activation of known RET intracellular signaling targets (ERK1/2, STAT1, STAT3, and TCF4), and the extent of ERK1/2 inhibition on sorafenib treatment. We found that RET variants Arg886Trp and Glu511Lys have shown increased in vitro transforming potential in a glial-derived neurotrophic factor-dependent manner. In contrast, the Ser649Leu variant did not significantly increased the number of foci and agar colonies relative to wild-type RET (RET-WT). The variants Glu511Lys and Arg886Trp showed 10- and 12.5-fold ERK1/2 activation respectively, that was significantly higher than that observed for RET-WT (fivefold). Increased levels of STAT1 and TCF4 activation were only observed for RET Arg886Trp (2.5- and 3-fold versus 1.2- and 2-fold in RET-WT respectively). The three RET variants analyzed here were sensitive to treatment with sorafenib. In conclusion, our results allow to classify previously uncharacterized RET genotypes, which may be of use to define follow-up and therapeutic regimens.