Search Results

You are looking at 11 - 20 of 73 items for

  • Abstract: Vitamin D x
  • Abstract: Parathy* x
  • All content x
Clear All Modify Search
Restricted access

A G Mackay, E A Ofori-Kuragu, A Lansdown, R C Coombes, L Binderup, and K W Colston


The anti-tumour effect of EB 1089, a novel vitamin D analogue with reduced calcaemic activity, was examined in vivo using the N-methyl-nitrosourea-induced rat mammary tumour model. The vitamin D compound was given orally at a dose of 1 pg/kg body weight alone and in combination with tamoxifen (1 mg/kg). Effects were compared with oral tamoxifen treatment alone. EB 1089 significantly inhibited tumour progression compared with controls with a response rate of 58% and a regression rate of 92% As expected, tamoxifen at the dose given also caused significant inhibition of tumour progression with a response rate of 73%. Combination of these two compounds did not lead to a marked increase in their effectiveness. Histological examination of tumours from EB 1089-treated rats showed a marked reduction in cellularity and mitotic activity.

At the dose given, EB 1089 produced a significant rise in serum calcium concentration and urinary calcium excretion. Tamoxifen treatment alone did not significantly alter serum calcium levels. However, combined treatment with tamoxifen and EB 1089 led to a significant reduction in hypercalcaemia compared with EB 1089 alone. It is suggested that vitamin D analogues with reduced calcaemic activity may provide a new therapeutic strategy for certain malignancies, either alone or in combination with established treatment regimens.

Endocrine-Related Cancer (1996) 3 327-335

Free access

María Jesús Larriba, Noelia Valle, Héctor G Pálmer, Paloma Ordóñez-Morán, Silvia Álvarez-Díaz, Karl-Friedrich Becker, Carlos Gamallo, Antonio García de Herreros, José Manuel González-Sancho, and Alberto Muñoz

The Wnt/β-catenin signalling pathway is activated in 90% of human colon cancers by nuclear accumulation of β-catenin protein due to its own mutation or to that of adenomatous polyposis coli. In the nucleus, β-catenin regulates gene expression promoting cell proliferation, migration and invasiveness. 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits β-catenin signalling by inducing its binding to vitamin D receptor (VDR) and by promoting β-catenin nuclear export. The transcription factor Snail1 represses VDR expression and we demonstrate here that Snail1 also abolishes the nuclear export of β-catenin induced by 1,25(OH)2D3 in SW480-ADH cells. Accordingly, Snail1 relieves the inhibition exerted by 1,25(OH)2D3 on genes whose expression is driven by β-catenin, such as c-MYC, ectodermal-neural cortex-1 (ENC-1) or ephrin receptor B2 (EPHB2). In addition, Snail1 abrogates the inhibitory effect of 1,25(OH)2D3 on cell proliferation and migration. In xenografted mice, Snail1 impedes the nuclear export of β-catenin and the inhibition of ENC-1 expression induced by EB1089, a 1,25(OH)2D3 analogue. The elevation of endogenous SNAIL1 protein levels reproduces the effect of an ectopic Snail1 gene. Remarkably, the expression of exogenous VDR in cells with high levels of Snail1 normalizes the transcriptional responses to 1,25(OH)2D3. However, this exogenous VDR failed to fully restore the blockage of the Wnt/β-catenin pathway by 1,25(OH)2D3. This suggests that the effects of Snail1 on this pathway are not merely due to the repression of VDR gene. We conclude that Snail1 is a positive regulator of the Wnt/β-catenin signalling pathway in part through the abrogation of the inhibitory action of 1,25(OH)2D3.

Open access

Marc Sinotte, François Rousseau, Pierre Ayotte, Eric Dewailly, Caroline Diorio, Yves Giguère, Sylvie Bérubé, and Jacques Brisson

Vitamin D has been associated with reduced breast cancer risk. We studied the association of two vitamin D receptor (VDR) gene single nucleotide polymorphisms restriction enzyme detecting SNP of VDR (FokI and BsmI) with breast cancer risk in two independent case–control studies carried out in the same population. The modifying effect of family history of breast cancer on this relationship was also evaluated. The first and second studies included respectively 718 (255 cases/463 controls) and 1596 (622 cases/974 controls) women recruited in Quebec City, Canada. FokI and BsmI genotypes were assessed. Relative risks of breast cancer were estimated by multivariate logistic regression. Compared with homozygotes for the common F allele (FF genotype), FokI ff homozygotes had a higher breast cancer risk (study 1: odds ratio (OR)=1.22, 95% confidence interval (CI)=0.76–1.95; study 2: OR=1.44, 95% CI=1.05–1.99; and combined studies: OR=1.33, 95% CI=1.03–1.73). Significant interactions were observed between FokI and family history of breast cancer in the two studies as well as in the combined analysis (P interaction=0.031, 0.050 and 0.0059 respectively). Among women without family history, odds ratios were 1.00, 1.27 (95% CI=1.02–1.58) and 1.57 (95% CI=1.18–2.10) respectively for FF, Ff and ff carriers (P trend=0.0013). BsmI Bb+bb genotypes were associated with a weak non-significant increased risk in the two studies (combined OR=1.22, 95% CI=0.95–1.57) without interaction with family history. Results support the idea that vitamin D, through its signalling pathway, can affect breast cancer risk. They also suggest that variability in observed associations between VDR FokI and breast cancer from different studies may partly be explained by the proportion of study subjects with a family history of breast cancer.

Free access

Alyson Murray, Stephen F Madden, Naoise C Synnott, Rut Klinger, Darran O'Connor, Norma O'Donovan, William Gallagher, John Crown, and Michael J Duffy

Considerable epidemiological evidence suggests that high levels of circulating vitamin D (VD) are associated with a decreased incidence and increased survival from cancer, i.e., VD may possess anti-cancer properties. The aim of this investigation was therefore to investigate the anti-cancer potential of a low calcaemic vitamin D analogue, i.e., inecalcitol and compare it with the active form of vitamin D, i.e., calcitriol, in a panel of breast cancer cell lines (n = 15). Using the MTT assay, IC50 concentrations for response to calcitriol varied from 0.12 µM to >20 µM, whereas those for inecalcitol were significantly lower, ranging from 2.5 nM to 63 nM (P = 0.001). Sensitivity to calcitriol and inecalcitol was higher in VD receptor (VDR)-positive compared to VDR-negative cell lines (P = 0.0007 and 0.0080, respectively) and in ER-positive compared to ER-negative cell lines (P = 0.043 and 0.005, respectively). Using RNA-seq analysis, substantial but not complete overlap was found between genes differentially regulated by calcitriol and inecalcitol. In particular, significantly enriched gene ontology terms such as cell surface signalling and cell communication were found after treatment with inecalcitol but not with calcitriol. In contrast, ossification and bone morphogenesis were found significantly enriched after treatment with calcitriol but not with inecalcitol. Our preclinical results suggest that calcitriol and inecalcitol can inhibit breast cancer cell line growth, especially in cells expressing ER and VDR. As inecalcitol is significantly more potent than calcitriol and has low calcaemic potential, it should be further investigated for the treatment of breast cancer.

Free access

María Rodríguez-Sanz, Daniel Prieto-Alhambra, Sonia Servitja, Natalia Garcia-Giralt, Laia Garrigos, Jaime Rodriguez-Morera, Joan Albanell, Maria Martínez-García, Iria González, Adolfo Diez-Perez, Ignasi Tusquets, and Xavier Nogués


The aim of the study was to evaluate the progression of bone mineral density (BMD) during 3 years of aromatase inhibitors (AI) therapy in actual practice conditions. This prospective, clinical cohort study of Barcelona–Aromatase induced Bone Loss in Early breast cancer (B-ABLE) assessed BMD changes during 3 years of AI treatment in women with breast cancer. Patients with osteoporosis (T score < −2.5 or T score ≤ −2.0) and a major risk factor and/or prevalent fragility fractures were treated with oral bisphosphonates (BPs). Of 685 women recruited, 179 (26.1%) received BP treatment. By the third year of AI therapy, this group exhibited increased BMD in the lumbar spine (LS; 2.59%) and femoral neck (FN; 2.50%), although the increase was significant only within the first year (LS: 1.99% and FN: 2.04%). Despite BP therapy, however, approximately 15% of these patients lost more than 3% of their baseline bone mass. At 3 years, patients without BP experienced BMD decreases in the LS (−3.10%) and FN (−2.79%). In this group, BMD changes occurred during the first (LS: −1.33% and FN: −1.25%), second (LS: −1.19% and FN: −0.82%), and third (LS: −0.57% and FN: −0.65%) years of AI treatment. Increased BMD (>3%) was observed in just 7.6% and 10.8% of these patients at the LS and FN, respectively. Our data confirm a clinically relevant bone loss associated with AI therapy amongst nonusers of preventative BPs. We further report on the importance of BMD monitoring as well as calcium and 25-hydroxy vitamin D supplementation in these patients.

Free access

Aruna V Krishnan and David Feldman

Calcitriol, the hormonally active form of vitamin D, exerts multiple anti-proliferative and pro-differentiating actions including cell cycle arrest and induction of apoptosis in many malignant cells, and the hormone is currently being evaluated in clinical trials as an anti-cancer agent. Recent research reveals that calcitriol also exhibits multiple anti-inflammatory effects. First, calcitriol inhibits the synthesis and biological actions of pro-inflammatory prostaglandins (PGs) by three mechanisms: i) suppression of the expression of cyclooxygenase-2, the enzyme that synthesizes PGs; ii) up-regulation of the expression of 15-hydroxyprostaglandin dehydrogenase, the enzyme that inactivates PGs; and iii) down-regulation of the expression of PG receptors that are essential for PG signaling. The combination of calcitriol and nonsteroidal anti-inflammatory drugs results in a synergistic inhibition of the growth of prostate cancer (PCa) cells and offers a potential therapeutic strategy for PCa. Second, calcitriol increases the expression of mitogen-activated protein kinase phosphatase 5 in prostate cells resulting in the subsequent inhibition of p38 stress kinase signaling and the attenuation of the production of pro-inflammatory cytokines. Third, calcitriol also exerts anti-inflammatory activity in PCa through the inhibition of nuclear factor-κB signaling that results in potent anti-inflammatory and anti-angiogenic effects. Other important direct effects of calcitriol as well as the consequences of its anti-inflammatory effects include the inhibition of tumor angiogenesis, invasion, and metastasis. We hypothesize that these anti-inflammatory actions, in addition to the other known anti-cancer effects of calcitriol, play an important role in its potential use as a therapeutic agent for PCa. Calcitriol or its analogs may have utility as chemopreventive agents and should be evaluated in clinical trials in PCa patients with early or precancerous disease.

Free access

A Falchetti and M L Brandi

Multiple Endocrine Neoplasias type 1 (MEN 1) and type 2 (MEN 2) represent complex inherited (autosomal dominant traits) syndromes characterized by occurrence of distinct proliferative disorders of endocrine tissues, varying from hyperplasia to adenoma and carcinoma.

MEN 1 syndrome is characterized by parathyroid gland, anterior pituitary and endocrine pancreas tumors. Other endocrine and non endocrine tumors, such as carcinoids, lipomas, pinealomas, adrenocortical and thyroid follicular tumors, have been also described in MEN 1 patients occurring at higher frequency than in general population (Brandi ML et al. 1987). Recently also a spinal ependymoma has been found in a patient with MEN 1 syndrome (Kato H et al 1997)

MEN 2 syndromes recognize three main clinical entities, MEN 2A, characterized by medullary thyroid carcinoma (MTC), primary hyperparathyroidism (PHPT) and pheochromocytoma (PHEO); MEN 2B that exhibits MTC, usually developing sooner than the MEN 2A- associated one, pheochromocytoma, multiple neuromas of gastroenteric mucosa, myelinated corneal nerves (Gorlin RJ et al. 1968) and a typical marphanoid habitus; and familial medullary thyroid carcinoma only (FMTC) featuring by families with at least four members with MTC and no objective evidence of pheochromocytoma and parathyroid disease on screening of affected and at-risk members, as stated by the International RET Mutation Consortium (Larsson C et al. 1994).


This work was supported by grants of the Associazione Italiana per la Ricerca sul Cancro (to MLB), from CNR/PF ACRO (INV. 95.00316 PF 39) and by MURST 60% (to MLB).

Free access

Arthur Varoquaux, Electron Kebebew, Fréderic Sebag, Katherine Wolf, Jean-François Henry, Karel Pacak, and David Taïeb

The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase complex subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from surgery to abstention or therapeutic radiation with curative-like outcomes. Parathyroid tissue and parathyroid adenoma can also be found in close association with the vagus nerve in intra or paravagal situations. Vagal parathyroid adenoma can be identified with preoperative imaging or suspected intraoperatively by experienced surgeons. Vagal parathyroid adenomas located in the neck or superior mediastinum can be removed via initial cervicotomy, while those located in the aortopulmonary window require a thoracic approach. This review particularly emphasizes the embryology, molecular genetics, and modern imaging of these tumors.

Free access

C Verdelli, L Avagliano, P Creo, V Guarnieri, A Scillitani, L Vicentini, G B Steffano, E Beretta, L Soldati, E Costa, A Spada, G P Bulfamante, and S Corbetta

Components of the tumour microenvironment initiate and promote cancer development. In this study, we investigated the stromal component of parathyroid neoplasia. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) showed an abundant periacinar distribution of α-SMA+ cells in normal parathyroid glands (n=3). This pattern was progressively lost in parathyroid adenomas (PAds; n=6) where α-SMA+cells were found to surround new microvessels, as observed in foetal parathyroid glands (n=2). Moreover, in atypical adenomas (n=5) and carcinomas (n=4), α-SMA+ cells disappeared from the parenchyma and accumulated in the capsula and fibrous bands. At variance with normal glands, parathyroid tumours (n=37) expressed high levels of fibroblast-activation protein (FAP) transcripts, a marker of tumour-associated fibroblasts. We analysed the ability of PAd-derived cells to activate fibroblasts using human bone-marrow mesenchymal stem cells (hBM-MSCs). PAd-derived cells induced a significant increase in FAP and vascular endothelial growth factor A (VEGFA) mRNA levels in co-cultured hBM-MSCs. Furthermore, the role of the calcium-sensing receptor (CASR) and of the CXCL12/CXCR4 pathway in the PAd-induced activation of hBM-MSCs was investigated. Treatment of co-cultures of hBM-MSCs and PAd-derived cells with the CXCR4 inhibitor AMD3100 reduced the stimulated VEGFA levels, while CASR activation by the R568 agonist was ineffective. PAd-derived cells co-expressing parathyroid hormone (PTH)/CXCR4 and PTH/CXCL12 were identified by FACS, suggesting a paracrine/autocrine signalling. Finally, CXCR4 blockade by AMD3100 reduced PTH gene expression levels in PAd-derived cells. In conclusion, i) PAd-derived cells activated cells of mesenchymal origin; ii) PAd-associated fibroblasts were involved in tumuor neoangiogenesis and iii) CXCL12/CXCR4 pathway was expressed and active in PAd cells, likely contributing to parathyroid tumour neoangiogenesis and PTH synthesis modulation.