Search Results

You are looking at 31 - 40 of 467 items for

  • Abstract: Thyroid* x
  • Abstract: Digestion x
  • Abstract: Thyroxine x
  • Abstract: Hypothyroidism x
  • Abstract: Hyperthyroidism x
  • Abstract: TSHR x
  • Abstract: Metabolism x
  • Abstract: Graves x
  • Abstract: Metformin x
Clear All Modify Search
Free access

Ninu Poulose, Ian G Mills and Rebecca E Steele

Metabolic dysregulation is regarded as an important driver in cancer development and progression. The impact of transcriptional changes on metabolism has been intensively studied in hormone-dependent cancers, and in particular, in prostate and breast cancer. These cancers have strong similarities in the function of important transcriptional drivers, such as the oestrogen and androgen receptors, at the level of dietary risk and epidemiology, genetics and therapeutically. In this review, we will focus on the function of these nuclear hormone receptors and their downstream impact on metabolism, with a particular focus on lipid metabolism. We go on to discuss how lipid metabolism remains dysregulated as the cancers progress. We conclude by discussing the opportunities that this presents for drug repurposing, imaging and the development and testing of new therapeutics and treatment combinations.

Free access

Kathrin A Schmohl, Andrea M Müller, Alexandra Wechselberger, Svenja Rühland, Nicole Salb, Nathalie Schwenk, Heike Heuer, Janette Carlsen, Burkhard Göke, Peter J Nelson and Christine Spitzweg

To improve our understanding of non-genomic, integrin αvβ3-mediated thyroid hormone action in tumour stroma formation, we examined the effects of triiodo-l-thyronine (T3), l-thyroxine (T4) and integrin-specific inhibitor tetrac on differentiation, migration and invasion of mesenchymal stem cells (MSCs) that are an integral part of the tumour's fibrovascular network. Primary human bone marrow-derived MSCs were treated with T3 or T4 in the presence of hepatocellular carcinoma (HCC) cell-conditioned medium (CM), which resulted in stimulation of the expression of genes associated with cancer-associated fibroblast-like differentiation as determined by qPCR and ELISA. In addition, T3 and T4 increased migration of MSCs towards HCC cell-CM and invasion into the centre of three-dimensional HCC cell spheroids. All these effects were tetrac-dependent and therefore integrin αvβ3-mediated. In a subcutaneous HCC xenograft model, MSCs showed significantly increased recruitment and invasion into tumours of hyperthyroid mice compared to euthyroid and, in particular, hypothyroid mice, while treatment with tetrac almost completely eliminated MSC recruitment. These studies significantly improve our understanding of the anti-tumour activity of tetrac, as well as the mechanisms that regulate MSC differentiation and recruitment in the context of tumour stroma formation, as an important prerequisite for the utilisation of MSCs as gene delivery vehicles.

Free access

Jennifer F Barger and David R Plas

Cancer biologists' search for new chemotherapy targets is reinvigorating the study of how cancer cell metabolism determines both oncogenic potential and chemotherapeutic responses. Oncogenic metabolic programs support the bioenergetics associated with resistance to programed cell death and provide biosynthetic building blocks for cell growth and mitogenesis. Both signal transduction pathway activation and direct mutations in key metabolic enzymes can activate the metabolic programs that support cancer cell growth. Cancer-associated metabolic programs include glycolysis, glutamine oxidation, and fatty acid metabolism. Recent observations are revealing the regulatory mechanisms that activate cancer-associated metabolism, and the competitive advantages provided to transformed cells by their metabolic programs. In this study, we review recent results illustrating the mechanisms and functional impact of each of these oncogenic metabolic programs in cancer cell growth and survival.

Free access

Lisa M Butler, Margaret M Centenera and Johannes V Swinnen

One of the most typical hallmarks of prostate cancer cells is their exquisite dependence on androgens, which is the basis of the widely applied androgen deprivation therapy. Among the variety of key cellular processes and functions that are regulated by androgens, lipid metabolism stands out by its complex regulation and its many intricate links with cancer cell biology. Here, we review our current knowledge on the links between androgens and lipid metabolism in prostate cancer, and highlight recent developments and insights into the links between key oncogenic stimuli and altered lipid synthesis and/or uptake that may hold significant potential for biomarker development and provide new vulnerabilities for therapeutic intervention.

Free access

Luca Varinelli, Dario Caccia, Chiara C Volpi, Claudio Caccia, Maida De Bortoli, Elena Taverna, Ambra V Gualeni, Valerio Leoni, Annunziata Gloghini, Giacomo Manenti and Italia Bongarzone

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is over-expressed in several human neoplastic cells. When MIF binds its receptor (CD74) and co-receptor (CD44), it initiates signaling cascades that orchestrate cell proliferation and survival, and it can directly modulate the activity of AMPK. These activities indicate that MIF potentially regulates cell survival and metabolism. We found that MIF was primarily co-expressed with CD74 in 16 out of 23 papillary thyroid carcinoma (PTC) and in all the 27 available anaplastic thyroid carcinoma (ATC) biopsy samples. MIF and CD74 were co-expressed in TPC-1 and HTC-C3 cell lines. The selective MIF inhibitor, 4-iodo-6-phenylpyrimidine (4-IPP), blocked MIF/CD74 internalization, activated JNK, and dose-dependently inhibited proliferation inducing apoptosis and mitotic cell death. In two CD74-negative cell lines, NIM-1 and K1, 4-IPP treatment partially reduced proliferation. Coordinated MIF and CD74 expression appeared to confer in tumor cells the plasticity necessary to escape cell cycle regulation, metabolic changes, and stress conditions. MIF/CD74 signaling removal made cells susceptible to apoptosis and mitotic cell death. This finding suggests a possible avenue for targeting DNA endoreduplication, thus preventing the proliferation of therapy-resistant cell subpopulations. This study highlights MIF/CD74 axis as an important player in the biology of aggressive thyroid neoplasms.

Free access

Giuseppe Palladino, Tiziana Notarangelo, Giuseppe Pannone, Annamaria Piscazzi, Olga Lamacchia, Lorenza Sisinni, Girolamo Spagnoletti, Paolo Toti, Angela Santoro, Giovanni Storto, Pantaleo Bufo, Mauro Cignarelli, Franca Esposito and Matteo Landriscina

Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro. Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis.

Free access

Antonio De la Vieja and Pilar Santisteban

Iodide (I) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I recycling. New research supports the exciting idea that I participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I in biological systems, before the appearance of TH in evolution. I per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I, has made NIS a preferred target-specific theranostic agent.

Free access

E Puxeddu, J A Knauf, M A Sartor, N Mitsutake, E P Smith, M Medvedovic, C R Tomlinson, S Moretti and J A Fagin

RET/PTC rearrangements represent key genetic events involved in papillary thyroid carcinoma (PTC) initiation. The aim of the present study was to identify the early changes in gene expression induced by RET/PTC in thyroid cells. For this purpose, microarray analysis was conducted on PCCL3 cells conditionally expressing the RET/PTC3 oncogene. Gene expression profiling 48 h after activation of RET/PTC3 identified a statistically significant modification of expression of 270 genes. Quantitative PCR confirmation of 20 of these demonstrated 90% accuracy of the microarray. Functional clustering of genes with greater than or less than 1.75-fold expression change (86 genes) revealed RET/PTC3-induced regulation of genes with key functions in apoptosis (Ripk3, Tdga), cell–cell signaling (Cdh6, Fn1), cell cycle (Il24), immune and inflammation response (Cxcl10, Scya2, Il6, Gbp2, Oas1, Tap1, RT1Aw2, C2ta, Irf1, Lmp2, Psme2, Prkr), metabolism (Aldob, Ptges, Nd2, Gss, Gstt1), signal transduction (Socs3, Nf1, Jak2, Cpg21, Dusp6, Socs1, Stat1, Stat3, Cish) and transcription (Nr4a1, Junb, Hfh1, Runx1, Foxe1). Genes coding for proteins involved in the immune response and in intracellular signal transduction pathways activated by cytokines and chemokines were strongly represented, indicating a critical role of RET/PTC3 in the early modulation of the immune response.

Free access

Yuanyuan Cui, Nagalakshmi Nadiminty, Chengfei Liu, Wei Lou, Chad T Schwartz and Allen C Gao

Cancer cells reprogram their metabolic pathways to facilitate fast proliferation. Previous studies have shown that overexpression of NF-κB2/p52 (p52) in prostate cancer cells promotes cell growth and leads to castration resistance through aberrant activation of androgen receptor (AR). In addition, these cells become resistant to enzalutamide. In this study, we investigated the effects of p52 activation on glucose metabolism and on response to enzalutamide therapy. Data analysis of gene expression arrays showed that genes including GLUT1 (SLC2A1), PKM2, G6PD, and ME1 involved in the regulation of glucose metabolism were altered in LNCaP cells overexpressing p52 compared with the parental LNCaP cells. We demonstrated an increased amount of glucose flux in the glycolysis pathway, as well as the pentose phosphate pathway (PPP) upon p52 activation. The p52-overexpressing cells increase glucose uptake and are capable of higher ATP and lactate production compared with the parental LNCaP cells. The growth of p52-overexpressing cells depends on glucose in the culture media and is sensitive to glucose deprivation compared with the parental LNCaP cells. Targeting glucose metabolism by the glucose analog 2-deoxy-d-glucose synergistically inhibits cell growth when combined with enzalutamide, and resensitizes p52-overexpressing cells to enzalutamide treatment. These results suggest that p52 modulates glucose metabolism, enhances glucose flux to glycolysis and PPPs, thus facilitating fast proliferation of the cells. Co-targeting glucose metabolism together with AR axis synergistically inhibits cell growth and restores enzalutamide-resistant cells to enzalutamide treatment.

Free access

D Deandreis, A Al Ghuzlan, S Leboulleux, L Lacroix, J P Garsi, M Talbot, J Lumbroso, E Baudin, B Caillou, J M Bidart and M Schlumberger

The aim of this study is to search for relationships between histology, radioiodine (131I) uptake, fluorodeoxyglucose (FDG) uptake, and disease outcome in patients with metastatic thyroid cancer. Eighty patients with metastatic thyroid cancer (34 males, 46 females, mean age at the time of the diagnosis of metastases: 55 years) were retrospectively studied. All patients were treated with radioactive iodine and evaluated by FDG-positron emission tomography (PET). Primary tumor tissue sample was available in all cases. Forty-five patients (56%) had a papillary, 12 (15%) a follicular, and 23 (29%) a poorly differentiated thyroid cancer. Cellular atypias, necrosis, mitoses, thyroid capsule infiltration, and vascular invasion were frequently detected (70, 44, 52, 60, and 71% respectively). Metastases disclosed FDG uptake in 58 patients (72%) and 131I uptake in 37 patients (45%). FDG uptake was the only significant prognostic factor for survival (P=0.02). The maximum standardized uptake value and the number of FDG avid lesions were also related to prognosis (P=0.03 and 0.009). Age at the time of the diagnosis of metastases (P=0.001) and the presence of necrosis (P=0.002) were independent predictive factors of FDG uptake. Radioiodine uptake was prognostic for stable disease (P=0.001) and necrosis for progressive disease at 1 year (P=0.001). Histological subtype was not correlated with in vivo tumor metabolism and prognosis. In conclusion, FDG uptake in metastatic thyroid cancer is highly prognostic for survival. Histological subtype alone does not correlate with 131I/FDG uptake pattern and patient outcome. Well-differentiated thyroid cancer presenting histological features such as necrosis and FDG uptake on PET scan should be considered aggressive differentiated cancers.