Search Results

You are looking at 71 - 80 of 491 items for

  • Abstract: Prostate x
  • Abstract: Androgen x
  • Abstract: Steroids x
  • Abstract: Testosterone x
  • Abstract: AAWS x
  • Abstract: Enzalutamide x
  • Abstract: Estradiol x
  • Abstract: DHEA x
  • Abstract: ACTH x
Clear All Modify Search
Free access

T Zaccheo, D Giudici and E di Salle

The steroid 5 alpha-reductase enzyme catalyzes the conversion of testosterone to the potent androgen 5 alpha-dihydrotestosterone (DHT). PNU 157706, a novel, potent and selective dual 5 alpha-reductase inhibitor, was reported to be effective in inhibiting the growth of established tumors in the Dunning R3327 rat prostatic carcinoma model. We have studied the efficacy of combined treatment with PNU 157706 and the antiandrogen flutamide in this prostatic tumor in rats. Rats with tumor diameters of about 1 cm were treated orally 6 days a week for 9 weeks with PNU 157706 (10 mg/kg per day) alone or in combination with flutamide (1 and 5 mg/kg per day). Animals were killed 24 h after the last treatment and ventral prostates were removed for testosterone and DHT determination. PNU 157706 reduced the growth of established tumors by 36%; flutamide showed a slight effect at 1 mg/kg per day (24% inhibition), while at the dose of 5 mg/kg per day it reduced tumor growth by 48%. The combination of PNU 157706 with the lower dose of flutamide caused an additive tumor growth inhibition (60%) and the combination with the higher dose of flutamide resulted in a better inhibition of tumor growth (68%) than did either treatment alone. Castration resulted in marked tumor growth inhibition (76%). Ventral prostate weight was more markedly reduced by PNU 157706 treatment than by flutamide; combined treatment was as effective as castration. Prostatic DHT content was markedly reduced by PNU 157706 (93%), whereas prostatic testosterone increased (137%). Concomitant treatment with flutamide partially antagonized the testosterone increase induced by PNU 157706 and did not modify the already considerable suppression of DHT. These data show that the inhibitory effects of PNU 157706 and flutamide on Dunning prostatic tumor growth are additive, thus supporting the rationale of this combination therapy in advanced prostate cancer, in order to achieve adequate androgen blockade with minimal side-effects.

Free access

E J Sánchez-Barceló, S Cos, R Fernández and M D Mediavilla

Melatonin is an indolic hormone produced mainly by the pineal gland. The former hypothesis of its possible role in mammary cancer development was based on the evidence that melatonin down-regulates some of the pituitary and gonadal hormones that control mammary gland development and which are also responsible for the growth of hormone-dependent mammary tumors. Furthermore, melatonin could act directly on tumoral cells, as a naturally occurring antiestrogen, thereby influencing their proliferative rate. The first reports revealed a low plasmatic melatonin concentration in women with estrogen receptor (ER)-positive breast tumors. However, later studies on the possible role of melatonin on human breast cancer have been scarce and mostly of an epidemiological type. These studies described a low incidence of breast tumors in blind women as well as an inverse relationship between breast cancer incidence and the degree of visual impairment. Since light inhibits melatonin secretion, the relative increase in the melatonin circulating levels in women with a decreased light input could be interpreted as proof of the protective role of melatonin on mammary carcinogenesis. From in vivo studies on animal models of chemically induced mammary tumorigenesis, the general conclusion is that experimental manipulations activating the pineal gland or the administration of melatonin lengthens the latency and reduces the incidence and growth rate of mammary tumors, while pinealectomy usually has the opposite effects. Melatonin also reduces the incidence of spontaneous mammary tumors in different kinds of transgenic mice (c-neu and N-ras) and mice from strains with a high tumoral incidence. In vitro experiments, carried out with the ER-positive MCF-7 human breast cancer cells, demonstrated that melatonin, at a physiological concentration (1 nM) and in the presence of serum or estradiol: (a) inhibits, in a reversible way, cell proliferation, (b) increases the expression of p53 and p21WAF1 proteins and modulates the length of the cell cycle, and (c) reduces the metastasic capacity of these cells and counteracts the stimulatory effect of estradiol on cell invasiveness; this effect is mediated, at least in part, by a melatonin-induced increase in the expression of the cell surface adhesion proteins E-cadherin and beta(1)-integrin. The direct oncostatic effects of melatonin depends on its interaction with the tumor cell estrogen-responsive pathway. In this sense it has been demonstrated that melatonin down-regulates the expression of ERalpha and inhibits the binding of the estradiol-ER complex to the estrogen response element (ERE) in the DNA. The characteristics of melatonin's oncostatic actions, comprising different aspects of tumor biology as well as the physiological doses at which the effect is accomplished, give special value to these findings and encourage clinical studies on the possible therapeutic value of melatonin on breast cancer.

Free access

P Singh, A Uzgare, I Litvinov, S R Denmeade and J T Isaacs

Prostatic carcinogenesis is associated with changes in the androgen receptor (AR) axis converting it from a paracrine dependence upon stromal signaling to an autocrine-initiated signaling for proliferation and survival of prostatic cancer cells. This malignant conversion is due to gain of function changes in which the AR activates novel genomic (i.e. transcriptional) and non-genomic signaling pathways, which are not present in normal prostate epithelial cells. During further progression, additional molecular changes occur which allow these unique malignancy-dependent AR signaling pathways to be activated even in the low androgen ligand environment present following androgen ablation therapy. These signaling pathways are the result of partnering the AR with a series of other genomic (e.g. transcriptional co-activators) or non-genomic (e.g. steroid receptor co-activator (Src) kinase) signaling molecules. Thus, a combinatorial androgen receptor targeted therapy (termed CART therapy) inhibiting several points in the AR signaling cascade is needed to prevent the approximately 30,000 US males per year dying subsequent to failure of standard androgen ablation therapy. To develop such CART therapy, a series of agents targeted at specific points in the AR cascade should be used in combination with standard androgen ablative therapy to define the fewest number of agents needed to produce the maximal therapeutic anti-prostate cancer effect. As an initial approach for developing such CART therapy, a variety of new agents could be combined with luteinizing hormone-releasing hormone analogs. These include: (1) 5α-reductase inhibitors to inhibit the conversion of testosterone to the more potent androgen, dihydrotestosterone; (2) geldanamycin analogs to downregulate AR protein in prostate cancer cells, (3) ‘bulky’ steroid analogs, which can bind to AR and prevent its partnering with other co-activators/signaling molecules, and (4) small molecule kinase inhibitors to inhibit MEK, which is activated as part of the malignant AR signaling cascade.

Free access

Gido Snaterse, Jenny A Visser, Wiebke Arlt and Johannes Hofland

Steroid hormones play a central role in the maintenance and progression of prostate cancer. The androgen receptor is the primary driver of tumor cell proliferation and is activated by the androgens testosterone and 5α-dihydrotestosterone. Inhibition of this pathway through medical or surgical castration improves survival in the majority of advanced prostate cancer patients. However, conversion of adrenal androgen precursors and alternative steroidogenic pathways have been found to contribute to tumor progression and resistance to treatment. The emergence of highly accurate detection methods allows us to study steroidogenic mechanisms in more detail, even after treatment with potent steroidogenic inhibitors such as the CYP17A1 inhibitor abiraterone. A clear overview of steroid hormone levels in patients throughout the local, metastatic and castration-resistant stages of prostate cancer and treatment modalities is key toward a better understanding of their role in tumor progression and treatment resistance. In this review, we summarize the currently available data on steroid hormones that have been implicated in the various stages of prostate cancer. Additionally, this review addresses the implications of these findings, highlights important studies in this field and identifies current gaps in literature.

Free access

Heng Hong Lee, Yansong Zhu, Karthik M Govindasamy and Ganesan Gopalan

Estrogen is known to play a causative role in the development of sporadic breast cancers and chemoresistance. However, studies on the mechanism and proteins involved in mediating the oncogenic effects of estrogen are very limited. Recently, Aurora-A, a centrosomal protein kinase, which induces centrosome amplification and genomic instability, has been shown to be upregulated during long-term treatment of rats with estrogen and was implicated in estrogen-induced oncogenesis. Herein, we present results of the studies carried out in short-term in vitro cultures to understand the regulation of Aurora-A by estrogen and the effect of downregulation of Aurora-A on estrogen-induced breast tumorigenesis and chemoresistance. Treatment of breast cancer cells with 10 nM 17β-estradiol (E2) resulted in the upregulation of Aurora-A levels in an estrogen receptor-dependent manner. However, the upregulation by E2 was not restricted to Aurora-A alone. Following release from the tamoxifen-induced arrest, the appearance of Aurora-A in the presence of estradiol in MCF7 cells coincided with the appearance of other mitotic markers suggesting that the spike in Aurora-A levels is an indirect consequence of estrogen-mediated cell proliferation. Thus, at least in short-term in vitro studies, Aurora-A is not a specific direct target of estrogen. However, downregulation of Aurora-A by RNA interference led to a significant decrease in estrogen-induced, anchorage-dependent, and independent growth of MCF7 cells. Moreover, knockdown of Aurora-A could overcome estrogen-induced decrease in docetaxel sensitivity of MCF7 cells. Cumulatively, we propose that the upregulation of Aurora-A by estrogen in short-term in vitro cultures is an indirect consequence of estrogen-induced cell proliferation. Nevertheless, Aurora-A inhibitors could be exploited to override the effects of estrogen on breast tumorigenesis and chemoresistance.

Free access

Zane Hammoud, Bailin Tan, Sunil Badve and Robert M Bigsby

Numerous epidemiological observations point to sex differences in lung cancer etiology and progression. The present study was aimed at understanding the bases of these sex differences. To test the effect of estradiol on tumor progression, we used a mouse model based on conditional Kras expression and concurrent deletion of Tp53 following inhalation of an adenoviral vector expressing Cre recombinase (AdeCre). Ovariectomized females and males were treated with estradiol via a continuous-release capsule. Tumor multiplicity, tumor volume, and histological grade were determined at 10 weeks after AdeCre administration. Cell proliferation was monitored by Ki67 immunohistochemistry at 4 and 10 weeks after AdeCre administration. At 10 weeks, female mice had more than twice the number of tumors evident on the surface of the lungs than male mice; ovariectomy eliminated this sex difference. The estrogen treatment significantly increased tumor number and volume in ovariectomized females and in males. Histological character of the tumors ranged from adenoma to adenocarcinoma. Ovary-intact females exhibited higher grade tumors than ovariectomized females or males. Progression to higher histological grade was stimulated by estrogen in male mice but not in ovariectomized females. At 10 weeks after AdeCre administration, tumor cell Ki67-labeling varied widely, precluding assessment of an estrogen effect; however, at 4 weeks, Ki67 labeling of lung parenchymal cells was increased 3.5-fold by estrogen. In conclusion, estrogen acts as a promoter for lung adenocarcinoma in a genetically defined lung cancer model; estrogen-induced cell proliferation in the oncogene-initiated cells is likely to play a role in this tumor promoter activity.

Free access

T Suzuki, S Hayashi, Y Miki, Y Nakamura, T Moriya, A Sugawara, T Ishida, N Ohuchi and H Sasano

It has been reported that agonists of peroxisome proliferator-activated receptor γ (PPARγ) inhibit proliferation of breast carcinoma cells, but the biological significance of PPARγ remains undetermined in human breast carcinomas. Therefore, we immunolocalized PPARγ in 238 human breast carcinoma tissues. PPARγ immunoreactivity was detected in 42% of carcinomas, and was significantly associated with the status of estrogen receptor (ER) α, ERβ, progesterone receptor, retinoic X receptors, p21 or p27, and negatively correlated with histological grade or cyclooxygenase-2 status. PPARγ immunoreactivity was significantly associated with an improved clinical outcome of breast carcinoma patients by univariate analysis, and multivariate analysis demonstrated that PPARγ immunoreactivity was an independent prognostic factor for overall survival in ERα-positive patients. We then examined possible mechanisms of modulation by PPARγ on estrogenic actions in MCF-7 breast carcinoma cells. A PPARγ activator, 15-deoxy-Δ12,14- prostaglandin J2 (15d-PGJ2), significantly inhibited estrogen-responsive element-dependent transactivation by estradiol in MCF-7 cells, which was blocked by addition of a PPARγ antagonist GW9662. Subsequent study, employing a custom-made microarray focused on estrogen-responsive genes, revealed that mRNA expression was significantly regulated by estradiol in 49 genes, but this significance vanished on addition of 15d-PGJ2 in 16 out of 49 (33%) genes. These findings were confirmed by real-time PCR in 11 genes. 15d-PGJ2 significantly inhibited estrogen-mediated proliferation of MCF-7 cells, and caused accumulation of p21 and p27 protein. These results suggest that PPARγ is mainly expressed in well-differentiated and ER-positive breast carcinomas, and modulates estrogenic actions.

Free access

Hen Prizant, Manisha Taya, Irina Lerman, Allison Light, Aritro Sen, Soumya Mitra, Thomas H Foster and Stephen R Hammes

Abstract

Lymphangioleiomyomatosis (LAM) is a rare disease in women. Patients with LAM develop metastatic smooth-muscle cell adenomas within the lungs, resulting in reduced pulmonary function. LAM cells contain mutations in tuberous sclerosis genes (TSC1 or TSC2), leading to up-regulation of mTORC1 activity and elevated proliferation. The origin of LAM cells remains unknown; however, inactivation of Tsc2 gene in the mouse uterus resulted in myometrial tumors exhibiting LAM features, and approximately 50% of animals developed metastatic myometrial lung tumors. This suggests that LAM tumors might originate from the uterine myometrium, possibly explaining the overwhelming prevalence of LAM in female. Here, we demonstrate that mouse Tsc2-null myometrial tumors exhibit nearly all the features of LAM, including mTORC1/S6K activation, as well as expression of melanocytic markers and matrix metalloproteinases (MMPs). Estrogen ablation reduces S6K signaling and results in Tsc2-null myometrial tumor regression. Thus, even without TSC2, estradiol is required to maintain tumors and mTORC1/S6K signaling. Additionally, we find that MMP-2 and -9, as well as neutrophil elastase (NE), are overexpressed in Tsc2-null myometrial tumors in an estrogen-dependent fashion. In vivo fluorescent imaging using MMP- or NE-sensitive optical biomarkers confirms that protease activity is specific to myometrial tumors. Similar to LAM cells, uterine Tsc2-null myometrial cells also overexpress melanocytic markers in an estrogen-dependent fashion. Finally, we identify glycoprotein NMB (GPNMB) as a melanocytic marker up-regulated in Tsc2-null mouse uteri and human LAM samples. Our data highlight the potential importance of estradiol in LAM cells, suggesting that anti-estrogen therapy may be a treatment modality. Furthermore, proteases and GPNMB might be useful LAM biomarkers.

Free access

Vanessa W Lim, Jun Li, Yinhan Gong, Aizhen Jin, Jian-Min Yuan, Eu Leong Yong and Woon-Puay Koh

The estrogen levels of Asian women are different from those of Western women, and this could affect estrogen receptor (ER) bioactivity and breast cancer risk. We conducted a case–control study in 169 postmenopausal breast cancer cases and 426 matched controls nested within a population-based prospective cohort study, the Singapore Chinese Health Study, to evaluate the serum levels of estrogens and their receptor (ERα and ERβ)-mediated estrogenic activities in relation to breast cancer risk. Breast cancer cases had higher levels of estrogens and ER-mediated bioactivities in baseline serum than the controls. Compared with those in the lowest quartile, women in the highest quartile for estrone (E1) or ERα-mediated bioactivity had increased breast cancer risk. After additional adjustment for ERβ bioactivity, free estradiol, and E1 levels, serum ERα-mediated bioactivity remained associated with increased breast cancer risk. Compared with those in the lowest quartile, women in the highest quartile for ERα-mediated bioactivity had an odds ratio of 2.39 (95% CI=1.17–4.88; P for trend=0.016). Conversely, the positive association between E1 and cancer risk became null after adjustment for ERα-mediated bioactivity, suggesting that the effect of E1 could be mediated through ERα. Factor(s) contributing to increased ERα-mediated estrogenic bioactivity in serum and its role as a predictor for breast cancer risk need to be validated in future studies.

Free access

R Kumar, R K Vadlamudi and L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.