Search Results

You are looking at 71 - 80 of 467 items for

  • Abstract: Thyroid* x
  • Abstract: Digestion x
  • Abstract: Thyroxine x
  • Abstract: Hypothyroidism x
  • Abstract: Hyperthyroidism x
  • Abstract: TSHR x
  • Abstract: Metabolism x
  • Abstract: Graves x
  • Abstract: Metformin x
Clear All Modify Search
Free access

Frederieke M Brouwers, Sven Gläsker, Amanda F Nave, Alexander O Vortmeyer, Irina Lubensky, Steven Huang, Mones S Abu-Asab, Graeme Eisenhofer, Robert J Weil, Deric M Park, W Marston Linehan, Karel Pacak and Zhengping Zhuang

Pheochromocytomas are catecholamine-producing tumors that can occur in the context of von Hippel–Lindau syndrome (VHL) and multiple endocrine neoplasia type 2 (MEN2). Pheochromocytomas in these two syndromes differ in histopathological features, catecholamine metabolism, and clinical phenotype. To further investigate the nature of these differences, we compared the global protein expressions of 8 MEN2A-associated pheochromocytomas with 11 VHL-associated pheochromocytomas by two-dimensional gel electrophoresis proteomic profiling followed by sequencing and identification of differentially expressed proteins. Although both types of pheochromocytoma shared similarities in their protein expression patterns, the expression of several proteins was distinctly different between VHL- and MEN2A-associated pheochromocytomas. We identified several of these differentially expressed proteins. One of the proteins with higher expression in MEN2-associated tumors was chromogranin B, of which the differential expression was confirmed by western blot analysis. Our results expand the evidence for proteomic differences between these two tumor entities, and suggest that VHL-associated pheochromocytomas may be deficient in fundamental machinery for catecholamine storage. In light of these new findings, as well as existing evidence for differences between both types of pheochromocytomas, we propose that these tumors may have different developmental origins.

Free access

W Solarek, A M Czarnecka, B Escudier, Z F Bielecka, F Lian and C Szczylik

Insulin and IGFs play a significant role in cancer development and progression, including renal cell carcinoma (RCC). RCC is the most frequent type of kidney cancer in adults and the tenth most common malignancy worldwide. Insulin is normally associated with metabolism control, whereas IGFs are defined as proliferation regulators. Today, there is convincing evidence of an association between obesity and the risk of RCC. Indicated risk factors together with type 2 diabetes are irreversibly connected with circulating insulin and IGF levels. The interplay between these molecules, their receptors, and IGF-binding proteins might be crucial for RCC cell biology and RCC progression. Given the potent activity IGF/IGF receptor 1 (IGF1R) inhibitors demonstrate against RCC in basic research, some type of combination therapy may prove to be beneficial clinically in the management of RCC. This review addresses not only molecular but also clinical associations between insulin and IGF1 signaling pathways and both RCC biology and clinical course. Revealing these interactions may improve our understanding of basic molecular oncology processes in RCC and improve treatment strategies.

Free access

José O Alemán, Azeez Farooki and Monica Girotra

Tyrosine kinase inhibitors (TKIs) are at the forefront of molecular-targeted therapies for cancer. With the advent of imatinib for the treatment of chronic myelogenous leukemia, a new wave of small-molecule therapeutics redefined the oncologic treatment to become chronically administered medications with tolerable side-effect profiles compared with cytotoxic agents. Effects on bone mineral metabolism were observed during early imatinib treatment, in the form of hypophosphatemia with increased urinary phosphorus excretion. This finding led to detailed investigations of off-target effects responsible for changes in bone cell maturation, activity, and impact on bone mass. Subsequently, another BCR-Abl inhibitor (dasatinib), vascular endothelial growth factor (VEGF) inhibitors (sorafenib and sunitinib) as well as rearranged during transfection (RET) inhibitors (vandetanib and cabozantinib) were developed. Inhibition of bone resorption appears to be a class effect and is likely contributed by TKI effects on the hematopoietic and mesenchymal stem cells. As long-term, prospective, clinical outcomes data accumulate on these targeted therapies, the full extent of off-target side effects on bone health will need to be considered along with the significant benefits of tyrosine kinase inhibition in oncologic treatment.

Free access

Yvonne Fierz, Ruslan Novosyadlyy, Archana Vijayakumar, Shoshana Yakar and Derek LeRoith

Type 2 diabetes increases breast cancer risk and mortality, and hyperinsulinemia is a major mediator of this effect. The mammalian target of rapamycin (mTOR) is activated by insulin and is a key regulator of mammary tumor progression. Pharmacological mTOR inhibition suppresses tumor growth in numerous mammary tumor models in the non-diabetic setting. However, the role of the mTOR pathway in type 2 diabetes-induced tumor growth remains elusive. Herein, we investigated whether the mTOR pathway is implicated in insulin-induced mammary tumor progression in a transgenic mouse model of type 2 diabetes (MKR mice) and evaluated the impact of mTOR inhibition on the diabetic state. Mammary tumor progression was studied in the double transgenic MMTV-Polyoma Virus middle T antigen (PyVmT)/MKR mice and by orthotopic inoculation of PyVmT- and Neu/ErbB2-driven mammary tumor cells (Met-1 and MCNeuA cells respectively). mTOR inhibition by rapamycin markedly suppressed tumor growth in both wild-type and MKR mice. In diabetic animals, however, the promoting action of insulin on tumor growth was completely blunted by rapamycin, despite a worsening of the carbohydrate and lipid metabolism. Taken together, pharmacological mTOR blockade is sufficient to abrogate mammary tumor progression in the setting of hyperinsulinemia, and thus mTOR inhibitors may be an attractive therapeutic modality for breast cancer patients with type 2 diabetes. Careful monitoring of the metabolic state, however, is important as dose adaptations of glucose- and/or lipid-lowering therapy might be necessary.

Free access

N Angelopoulos, V Barbounis, S Livadas, D Kaltsas and G Tolis

Breast cancer is one of the main life-threatening diseases that a woman may have to face during her lifetime. The increasing incidence of breast neoplasia reported over the last few decades has led to widespread screening of women resulting in early diagnosis. One common but challenging question for most doctors, after the surgical excision of the lesion, is determination of the ideal adjuvant therapy for their patients for the achievement of maximum life expectancy with the best quality of life.

Since the beginning of the last century, the knowledge that breast cancer arises from hormone-responsive tissues has long made use of hormone-blocking agents in the beneficial treatment of breast neoplasia. The discovery of new molecules with endocrine actions has rendered the use of adjuvant therapy in a tailor-made pattern too complicated, as these agents have a different mode of action, different adverse effects and probably different indications.

The aim of the present review is to clarify these issues, analyzing the mechanism of action of available drugs and their actions on specific areas of uncertainty: cognitive function, cardiovascular system, urogenital tract, bone metabolism, weight gain, hot flushes and premature menopause. Regarding the efficacy of adjuvant therapy, there has been particular focus on the multiple hormonal-induced consequences of each regimen in order to provide the clinician with the available data for choosing the ideal therapy for the patient.

Free access

Jennifer Munkley

Changes in glycan composition are common in cancer and can play important roles in all of the recognised hallmarks of cancer. We recently identified glycosylation as a global target for androgen control in prostate cancer cells and further defined a set of 8 glycosylation enzymes (GALNT7, ST6GalNAc1, GCNT1, UAP1, PGM3, CSGALNACT1, ST6GAL1 and EDEM3), which are also significantly upregulated in prostate cancer tissue. These 8 enzymes are under direct control of the androgen receptor (AR) and are linked to the synthesis of important cancer-associated glycans such as sialyl-Tn (sTn), sialyl LewisX (SLeX), O-GlcNAc and chondroitin sulfate. Glycosylation has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism. Our results suggest that alterations in patterns of glycosylation via androgen control might modify some or all of these processes in prostate cancer. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Emerging data on these often overlooked glycan modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.

Restricted access

Na Li, Huanni Li, Lanqin Cao and Xianquan Zhan

Mitochondria play important roles in growth, signal transduction, division, tumorigenesis and energy metabolism in epithelial ovarian carcinomas (EOCs) without an effective biomarker. To investigate the proteomic profile of EOC mitochondrial proteins, a 6-plex isobaric tag for relative and absolute quantification (iTRAQ) proteomics was used to identify mitochondrial expressed proteins (mtEPs) in EOCs relative to controls, followed by an integrative analysis of the identified mtEPs and the Cancer Genome Atlas (TCGA) data from 419 patients. A total of 5115 quantified proteins were identified from purified mitochondrial samples, and 262 proteins were significantly related to overall survival in EOC patients. Furthermore, 63 proteins were identified as potential biomarkers for the development of an EOC, and our findings were consistent with previous reports on a certain extent. Pathway network analysis identified 70 signaling pathways. Interestingly, the results demonstrated that cancer cells exhibited an increased dependence on mitophagy, such as peroxisome, phagosome, lysosome, valine, leucine and isoleucine degradation and fatty acid degradation pathways, which might play an important role in EOC invasion and metastasis. Five proteins (GLDC, PCK2, IDH2, CPT2 and HMGCS2) located in the mitochondrion and enriched pathways were selected for further analysis in an EOC cell line and tissues, and the results confirmed reliability of iTRAQ proteomics. These findings provide a large-scale mitochondrial proteomic profiling with quantitative information, a certain number of potential protein biomarkers and a novel vision in the mitophagy bio-mechanism of a human ovarian carcinoma.

Open access

Ju-Yeon Moon, Man Ho Choi and Jayoung Kim

Cholesterol and sex steroid hormones including androgens and estrogens play a critical role in the development and progression of urological diseases such as prostate cancer. This disease remains the most commonly diagnosed malignant tumor in men and is the leading cause of death from different cancers. Attempts to understand the role of cholesterol and steroid metabolism in urological diseases have been ongoing for many years, but despite this, our mechanistic and translational understanding remains elusive. In order to further evaluate the problem, we have taken an interest in metabolomics; a discipline dedicated to the systematic study of biologically active metabolites in cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative measurement of cholesterol and sex steroid metabolites can be successfully achieved using hair of human and mouse models. The overall goal of this short review article is to introduce current metabolomic technologies for the quantitative biomarker assay development and also to provide new insight into understanding the underlying mechanisms that trigger the pathological condition. Furthermore, this review will place a particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular profiles and assess their clinical significance in various urological diseases.

Free access

Yasuhiro Nakamura, Takashi Suzuki, Masao Nakabayashi, Mareyuki Endoh, Kazuhiro Sakamoto, Yoshiki Mikami, Takuya Moriya, Akihiro Ito, Shoki Takahashi, Shogo Yamada, Yoichi Arai and Hironobu Sasano

Androgens have been proposed to be actively produced in situ in human prostate cancer. These locally produced androgens have also been considered to play important roles in the pathogenesis and development of prostate cancer. Therefore, it is important to examine the status of this in situ androgen metabolism and/or synthesis in detail in order to improve the clinical response to hormonal therapy in patients diagnosed with prostate cancer. Several studies have previously demonstrated the expression of androgen-producing enzymes such as 5α-reductase types 1 and 2, and 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5), in human prostate carcinoma cells. However, their biological significance has remained largely unknown. In this study, we evaluated the immunoreactivities of these steroidogenic enzymes in human prostate cancer obtained from surgery (n=70), and correlated the findings with clinicopathological features of the patients. 17β-HSD5 immunoreactivity was detected in 54 cases (77%), 5α-reductase type 1 in 51 cases (73%) and 5α-reductase type 2 in 39 cases (56%). 5α-reductase type 2 immunoreactivity was significantly correlated with that of androgen receptor (AR), and 17β-HSD5 positive cases were significantly associated with clinical stage (TNM stage pT3 vs pT2). These data all suggest that androgen-producing enzymes, such as 5α-reductase type 1 and type 2, and 17β-HSD5 are expressed in a majority of prostate cancers, and are involved in the local production and actions of androgens in prostate cancers.

Free access

Filipa Morais-Santos, Vera Miranda-Gonçalves, Sílvia Pinheiro, André F Vieira, Joana Paredes, Fernando C Schmitt, Fátima Baltazar and Céline Pinheiro

The tumour microenvironment is known to be acidic due to high glycolytic rates of tumour cells. Monocarboxylate transporters (MCTs) play a role in extracellular acidification, which is widely known to be involved in tumour progression. Recently, we have described the upregulation of MCT1 in breast carcinomas and its association with poor prognostic variables. Thus, we aimed to evaluate the effect of lactate transport inhibition in human breast cancer cell lines. The effects of α-cyano-4-hydroxycinnamate, quercetin and lonidamine on cell viability, metabolism, proliferation, apoptosis, migration and invasion were assessed in a panel of different breast cancer cell lines. MCT1, MCT4 and CD147 were differently expressed among the breast cancer cell lines and, as expected, different sensitivities were observed for the three inhibitors. Interestingly, in the most sensitive cell lines, lactate transport inhibition induced a decrease in cell proliferation, migration and invasion, as well as an increase in cell death. Results were validated by silencing MCT1 expression using siRNA. The results obtained here support targeting of lactate transport as a strategy to treat breast cancer, with a special emphasis on the basal-like subtype, which so far does not have a specific molecular therapy.