Search Results

You are looking at 71 - 80 of 471 items for

  • Abstract: Thyroid* x
  • Abstract: Digestion x
  • Abstract: Thyroxine x
  • Abstract: Hypothyroidism x
  • Abstract: Hyperthyroidism x
  • Abstract: TSHR x
  • Abstract: Metabolism x
  • Abstract: Graves x
  • Abstract: Metformin x
Clear All Modify Search
Free access

Rebecca B Riggins, Mary M Mazzotta, Omar Z Maniya and Robert Clarke

Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRα and ERRγ) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor α. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer.

Open access

Lindsay G Carter, John A D'Orazio and Kevin J Pearson

Resveratrol is a naturally occurring polyphenol that provides a number of anti-aging health benefits including improved metabolism, cardioprotection, and cancer prevention. Much of the work on resveratrol and cancer comes from in vitro studies looking at resveratrol actions on cancer cells and pathways. There are, however, comparatively fewer studies that have investigated resveratrol treatment and cancer outcomes in vivo, perhaps limited by its poor bioavailability when taken orally. Although research in cell culture has shown promising and positive effects of resveratrol, evidence from rodents and humans is inconsistent. This review highlights the in vivo effects of resveratrol treatment on breast, colorectal, liver, pancreatic, and prostate cancers. Resveratrol supplementation in animal models of cancer has shown positive, neutral as well as negative outcomes depending on resveratrol route of administration, dose, tumor model, species, and other factors. Within a specific cancer type, there is variability between studies with respect to strain, age, and sex of animal used, timing and method of resveratrol supplementation, and dose of resveratrol used to study cancer endpoints. Together, the data suggest that many factors need to be considered before resveratrol can be used for human cancer prevention or therapy.

Free access

Hidewaki Nakagawa

Prostate cancer (PC) is the most common malignancy in males. It is evident that genetic factors at both germline and somatic levels play critical roles in prostate carcinogenesis. Recently, genome-wide association studies (GWAS) by high-throughput genotyping technology have identified more than 70 germline variants of various genes or chromosome loci that are significantly associated with PC susceptibility. They include multiple 8q24 loci, prostate-specific genes, and metabolism-related genes. Somatic alterations in PC genomes have been explored by high-throughput sequencing technologies such as whole-genome sequencing and RNA sequencing, which have identified a variety of androgen-responsive events and fusion transcripts represented by E26 transformation-specific (ETS) gene fusions. Recent innovations in high-throughput genomic technologies have enabled us to analyze PC genomics more comprehensively, more precisely, and on a larger scale in multiple ethnic groups to increase our understanding of PC genomics and biology in germline and somatic studies, which can ultimately lead to personalized medicine for PC diagnosis, prevention, and therapy. However, these data indicate that the PC genome is more complex and heterogeneous than we expected from GWAS and sequencing analyses.

Free access

A Stigliano, L Cerquetti, M Borro, G Gentile, B Bucci, S Misiti, P Piergrossi, E Brunetti, M Simmaco and V Toscano

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chloro-phenyl) ethane (o,p′-DDD), is a compound that represents the effective agent in the treatment of the adrenocortical carcinoma (ACC), able to block cortisol synthesis. In this type of cancer, the biological mechanism induced by this treatment remains still unknown. In this study, we have already shown a greater impairment in the first steps of the steroidogenesis and recognized a little effect on cell cycle. We also evaluated the variation of proteomic profile of the H295R ACC cell line, either in total cell extract or in mitochondria-enriched fraction after treatment with mitotane. In total cell extracts, triose phosphate isomerase, α-enolase, D-3-phosphoglycerate dehydrogenase, peroxiredoxin II and VI, heat shock protein 27, prohibitin, histidine triad nucleotide-binding protein, and profilin-1 showed a different expression. In the mitochondrial fraction, the following proteins appeared to be down regulated: aldolase A, peroxiredoxin I, heterogenous nuclear ribonucleoprotein A2/B1, tubulin-β isoform II, heat shock cognate 71 kDa protein, and nucleotide diphosphate kinase, whereas adrenodoxin reductase, cathepsin D, and heat shock 70 kDa protein 1A were positively up-regulated. This study represents the first proteomic study on the mitotane effects on ACC. It permits to identify some protein classes affected by the drug involved in energetic metabolism, stress response, cytoskeleton structure, and tumorigenesis.

Free access

W Solarek, A M Czarnecka, B Escudier, Z F Bielecka, F Lian and C Szczylik

Insulin and IGFs play a significant role in cancer development and progression, including renal cell carcinoma (RCC). RCC is the most frequent type of kidney cancer in adults and the tenth most common malignancy worldwide. Insulin is normally associated with metabolism control, whereas IGFs are defined as proliferation regulators. Today, there is convincing evidence of an association between obesity and the risk of RCC. Indicated risk factors together with type 2 diabetes are irreversibly connected with circulating insulin and IGF levels. The interplay between these molecules, their receptors, and IGF-binding proteins might be crucial for RCC cell biology and RCC progression. Given the potent activity IGF/IGF receptor 1 (IGF1R) inhibitors demonstrate against RCC in basic research, some type of combination therapy may prove to be beneficial clinically in the management of RCC. This review addresses not only molecular but also clinical associations between insulin and IGF1 signaling pathways and both RCC biology and clinical course. Revealing these interactions may improve our understanding of basic molecular oncology processes in RCC and improve treatment strategies.

Free access

P Hadji

Third-generation aromatase inhibitors (AIs) are replacing tamoxifen as adjuvant therapy in postmenopausal women with hormone-sensitive breast cancer due to their superiority shown in several recent head-to-head trials. Healthy postmenopausal women normally experience age-related side effects, and in postmenopausal women with breast cancer, these symptoms may be exacerbated by adjuvant endocrine therapy. This review evaluates the current literature regarding bone health, lipid metabolism, cardiovascular disease, gynecologic health, and cognition in postmenopausal women receiving adjuvant AI therapy. The AIs – anastrozole, exemestane, and letrozole – are generally well tolerated: most adverse events are mild to moderate and common to menopause. Common short-term AI-associated toxicities are hot flushes, musculoskeletal complaints/arthralgia, and bone loss, all of which can be effectively managed. AIs may lack the cardioprotective and lipid-lowering effects of tamoxifen but, in contrast to tamoxifen, do not increase the risk of serious life-threatening thromboembolic or cerebrovascular events or endometrial cancer. Every patient should be individually assessed with respect to therapy risks and benefits. Lifestyle, comorbidities, and concomitant medications must be considered, and the importance of compliance to adjuvant therapy should be discussed before selecting a treatment regimen. The superior efficacy of adjuvant AI therapy will in most cases outweigh the risk of bothersome side effects that can be prevented or easily managed.

Free access

Filipa Morais-Santos, Vera Miranda-Gonçalves, Sílvia Pinheiro, André F Vieira, Joana Paredes, Fernando C Schmitt, Fátima Baltazar and Céline Pinheiro

The tumour microenvironment is known to be acidic due to high glycolytic rates of tumour cells. Monocarboxylate transporters (MCTs) play a role in extracellular acidification, which is widely known to be involved in tumour progression. Recently, we have described the upregulation of MCT1 in breast carcinomas and its association with poor prognostic variables. Thus, we aimed to evaluate the effect of lactate transport inhibition in human breast cancer cell lines. The effects of α-cyano-4-hydroxycinnamate, quercetin and lonidamine on cell viability, metabolism, proliferation, apoptosis, migration and invasion were assessed in a panel of different breast cancer cell lines. MCT1, MCT4 and CD147 were differently expressed among the breast cancer cell lines and, as expected, different sensitivities were observed for the three inhibitors. Interestingly, in the most sensitive cell lines, lactate transport inhibition induced a decrease in cell proliferation, migration and invasion, as well as an increase in cell death. Results were validated by silencing MCT1 expression using siRNA. The results obtained here support targeting of lactate transport as a strategy to treat breast cancer, with a special emphasis on the basal-like subtype, which so far does not have a specific molecular therapy.

Free access

José O Alemán, Azeez Farooki and Monica Girotra

Tyrosine kinase inhibitors (TKIs) are at the forefront of molecular-targeted therapies for cancer. With the advent of imatinib for the treatment of chronic myelogenous leukemia, a new wave of small-molecule therapeutics redefined the oncologic treatment to become chronically administered medications with tolerable side-effect profiles compared with cytotoxic agents. Effects on bone mineral metabolism were observed during early imatinib treatment, in the form of hypophosphatemia with increased urinary phosphorus excretion. This finding led to detailed investigations of off-target effects responsible for changes in bone cell maturation, activity, and impact on bone mass. Subsequently, another BCR-Abl inhibitor (dasatinib), vascular endothelial growth factor (VEGF) inhibitors (sorafenib and sunitinib) as well as rearranged during transfection (RET) inhibitors (vandetanib and cabozantinib) were developed. Inhibition of bone resorption appears to be a class effect and is likely contributed by TKI effects on the hematopoietic and mesenchymal stem cells. As long-term, prospective, clinical outcomes data accumulate on these targeted therapies, the full extent of off-target side effects on bone health will need to be considered along with the significant benefits of tyrosine kinase inhibition in oncologic treatment.

Free access

Keely M McNamara, Nicole L Moore, Theresa E Hickey, Hironobu Sasano and Wayne D Tilley

While the clinical benefit of androgen-based therapeutics in breast cancer has been known since the 1940s, we have only recently begun to fully understand the mechanisms of androgen action in breast cancer. Androgen signalling pathways can have either beneficial or deleterious effects in breast cancer depending on the breast cancer subtype and intracellular context. This review discusses our current knowledge of androgen signalling in breast cancer, including the relationship between serum androgens and breast cancer risk, the prognostic significance of androgen receptor (AR) expression in different breast cancer subtypes and the downstream molecular pathways mediating androgen action in breast cancer cells. Intracrine androgen metabolism has also been discussed and proposed as a potential mechanism that may explain some of the reported differences regarding dichotomous androgen actions in breast cancers. A better understanding of AR signalling in this disease is critical given the current resurgence in interest in utilising contemporary AR-directed therapies for breast cancer and the need for biomarkers that will accurately predict clinical response.

Free access

Jennifer Munkley

Changes in glycan composition are common in cancer and can play important roles in all of the recognised hallmarks of cancer. We recently identified glycosylation as a global target for androgen control in prostate cancer cells and further defined a set of 8 glycosylation enzymes (GALNT7, ST6GalNAc1, GCNT1, UAP1, PGM3, CSGALNACT1, ST6GAL1 and EDEM3), which are also significantly upregulated in prostate cancer tissue. These 8 enzymes are under direct control of the androgen receptor (AR) and are linked to the synthesis of important cancer-associated glycans such as sialyl-Tn (sTn), sialyl LewisX (SLeX), O-GlcNAc and chondroitin sulfate. Glycosylation has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism. Our results suggest that alterations in patterns of glycosylation via androgen control might modify some or all of these processes in prostate cancer. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Emerging data on these often overlooked glycan modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.