Search Results

You are looking at 1 - 10 of 249 items for

  • Abstract: Chemicals x
  • Abstract: Pollutants x
  • Abstract: Plastics x
  • Abstract: BPA x
  • Abstract: Additives x
  • Abstract: anti-androgenic x
  • Abstract: Bisphenol-A x
  • Abstract: Drugs x
  • Abstract: endocrine disrupters x
Clear All Modify Search
Free access

Gail S Prins

There is increasing evidence both from epidemiology studies and animal models that specific endocrine-disrupting compounds may influence the development or progression of prostate cancer. In large part, these effects appear to be linked to interference with estrogen signaling, either through interacting with ERs or by influencing steroid metabolism and altering estrogen levels within the body. In humans, epidemiologic evidence links specific pesticides, PCBs and inorganic arsenic exposures to elevated prostate cancer risk. Studies in animal models also show augmentation of prostate carcinogenesis with several other environmental estrogenic compounds including cadmium, UV filters and BPA. Importantly, there appears to be heightened sensitivity of the prostate to these endocrine disruptors during the critical developmental windows including in utero and neonatal time points as well as during puberty. Thus infants and children may be considered a highly susceptible population for ED exposures and increased risk of prostate cancers with aging.

Free access

Elizabeth Kopras, Veena Potluri, Mei-Ling Bermudez, Karin Williams, Scott Belcher and Susan Kasper

Development and fate of the stem cell are regulated by extrinsic signals from the environment. Endocrine-disrupting chemicals which perturb hormonal signaling in utero and during early childhood may cause deregulation of multiple developmental processes, ranging from breakdown of stem cell niche architecture, developmental reprograming and altered stem cell fate to impaired organ and gonad development and sexual differentiation. Therefore, study of the environmental effects on stem cell integrity and normal development is a new and emerging focus for developmental biologists and cell toxicologists. When combined with new human and mouse stem cell-based models, stem cell differentiation dynamics can be studied in more biologically relevant ways. In this study, we review the current status of our understanding of the molecular mechanisms by which endocrine disruptors alter embryonic stem cell and adult stem/progenitor cell fate, organ development, cancer stem cell activity, and tumorigenesis.

Free access

Kevin C Knower, Sarah Q To, Yuet-Kin Leung, Shuk-Mei Ho and Colin D Clyne

The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.

Free access

Steven M Hill, Victoria P Belancio, Robert T Dauchy, Shulin Xiang, Samantha Brimer, Lulu Mao, Adam Hauch, Peter W Lundberg, Whitney Summers, Lin Yuan, Tripp Frasch and David E Blask

The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial–mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.

Free access

Elizabeth W LaPensee and Nira Ben-Jonathan

Resistance to chemotherapy is a major complication in the treatment of advanced breast cancer. Estrogens and prolactin (PRL) are implicated in the pathogenesis of breast cancer but their roles in chemoresistance have been overlooked. A common feature to the two hormones is activation of their receptors by diverse compounds, which mimic or antagonize their actions. The PRL receptor is activated by lactogens (PRL, GH, or placental lactogen) originating from the pituitary, breast, adipose tissue, or the placenta. Estrogen receptors exist in multiple membrane-associated and cytoplasmic forms that can be activated by endogenous estrogens, man-made chemicals, and phytoestrogens. Here, we review evidence that low doses of PRL, estradiol (E2), and bisphenol A (BPA) antagonize multiple anticancer drugs that induce cell death by different mechanisms. Focusing on cisplatin, a DNA-damaging drug which is effective in the treatment of many cancer types but not breast cancer, we compare the abilities of PRL, E2, and BPA to antagonize its cytotoxicity. Whereas PRL acts by activating the glutathione-S-transferase detoxification enzyme, E2 and BPA act by inducing the antiapoptotic protein Bcl-2. The implications of these findings to patients undergoing chemotherapy are discussed.

Free access

Fabiana Cillo, Magda de Eguileor, Fulvio Gandolfi and Tiziana A L Brevini

Environmental xenobiotics have been shown to act as endocrine disruptors and to be implicated in increased cancer susceptibility. In particular, there is a significant concern regarding the impact of these contaminants on prostate cancer development and progression. However, the mechanisms with which these contaminants exert their detrimental effects are yet unclear and need to be further elucidated. In the present study, we investigated the effects of Aroclor-1254, a mixture of more than 60 environmental pollutants belonging to the polychlorinated biphenyl family, on rat prostate primary cultures. The results obtained after 24-h exposure indicated the ability of this contaminant mixture to influence mRNA stability and length of the 3′-end poly(A)tail of Connexin-32, Connexin-43, and heat shock protein-70. Consistent with this observation, immunostaining experiments demonstrated the altered availability of the encoded proteins. We also focused our attention on possible effects of Aroclor-1254 on cell morphology and could detect ultrastructural changes with gap junction disruption, fusion of single cells into clusters, and different aspects of apoptosis that became evident when exposure to Aroclor-1254 was extended to 72 h. The effects on the nuclear compartment were confirmed by the results obtained with Comet assay that showed DNA decompression and double-strand breaks already after 24-h exposure. Taken together, these findings show a detrimental effect of Aroclor 1254 on rat prostate cells and indicate a possible association between exposure to polychlorinated biphenyl mixture and induction of transformation process in prostate cells.

Free access

Douglas A Gibson and Philippa T K Saunders

Endocrine disrupting chemicals (EDC) are ubiquitous and persistent compounds that have the capacity to interfere with normal endocrine homoeostasis. The female reproductive tract is exquisitely sensitive to the action of sex steroids, and oestrogens play a key role in normal reproductive function. Malignancies of the female reproductive tract are the fourth most common cancer in women, with endometrial cancer accounting for most cases. Established risk factors for development of endometrial cancer include high BMI and exposure to oestrogens or synthetic compounds such as tamoxifen. Studies on cell and animal models have provided evidence that many EDC can bind oestrogen receptors and highlighted early life exposure as a window of risk for adverse lifelong effects on the reproductive system. The most robust evidence for a link between early life exposure to EDC and adverse reproductive health has come from studies on women who were exposed in utero to diethylstilbestrol. Demonstration that EDC can alter expression of members of the HOX gene cluster highlights one pathway that might be vulnerable to their actions. In summary, evidence for a direct link between EDC exposure and cancers of the reproductive system is currently incomplete. It will be challenging to attribute causality to any single EDC when exposure and development of malignancy may be separated by many years and influenced by lifestyle factors such as diet (a source of phytoestrogens) and adiposity. This review considers some of the evidence collected to date.

Free access

Denise K Reaves, Erika Ginsburg, John J Bang and Jodie M Fleming

Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.

Free access

Penn Muluhngwi and Carolyn M Klinge

Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.

Free access

Anna Angelousi, Eva Kassi, Narjes Ansari-Nasiri, Harpal Randeva, Gregory Kaltsas and George Chrousos

Circadian rhythms at a central and peripheral level are operated by transcriptional/translational feedback loops involving a set of genes called ‘clock genes’ that have been implicated in the development of several diseases, including malignancies. Dysregulation of the Clock system can influence cancer susceptibility by regulating DNA damage and repair mechanisms, as well as apoptosis. A number of oncogenic pathways can be dysregulated via clock genes’ epigenetic alterations, including hypermethylation of clock genes’ promoters or variants of clock genes. Clock gene disruption has been studied in breast, lung and prostate cancer, and haematological malignancies. However, it is still not entirely clear whether clock gene disruption is the cause or the consequence of tumourigenesis and data in endocrine neoplasms are scarce. Recent findings suggest that clock genes are implicated in benign and malignant adrenocortical neoplasias. They have been also associated with follicular and papillary thyroid carcinomas and parathyroid adenomas, as well as pituitary adenomas and craniopharyngiomas. Dysregulation of clock genes is also encountered in ovarian and testicular tumours and may also be related with their susceptibility to chemotherapeutic agents. The most common clock genes that are implicated in endocrine neoplasms are PER1, CRY1; in most cases their expression is downregulated in tumoural compared to normal tissues. Although there is still a lot to be done for the better understanding of the role of clock genes in endocrine tumourigenenesis, existing evidence could guide research and help identify novel therapeutic targets aiming mainly at the peripheral components of the clock gene system.