Search Results

You are looking at 1 - 10 of 342 items for

  • Abstract: Insulin x
  • Abstract: Pancre* x
  • Abstract: Insulinoma x
  • Abstract: Islets x
  • Abstract: Beta x
  • Abstract: Diabetes x
  • Abstract: IGF* x
  • All content x
Clear All Modify Search
Free access

S Pelengaris and M Khan

Pancreatic islet neoplasms are rare endocrine tumours. The most common type is of beta-cell origin and is known as insulinoma, which can be either benign or malignant. The majority of insulinomas arise sporadically, but a small proportion develop as part of the hereditary multiple endocrine neoplasia type 1 (MEN1) syndrome. As for many human tumours, the genetic events that occur during the initiation and progression of insulinoma are poorly known. The men1 gene product, menin, is deficient in most hereditary cases, but is not obviously affected in the majority of sporadic tumours. Activation of the proto-oncogenes c-myc and ras has been observed during malignant progression, but their role in tumour initiation remains unproven. To address these questions, transgenic mouse models have been increasingly used to explore molecular and genetic events that might also precipitate human neoplasia. Transgenic mice expressing SV40 large T-antigen (Tag) oncogene in beta-cells develop tumours in a multi-stage progression from hyperplasia, angiogenesis, to solid encapsulated tumours. However, Tag, which inactivates the key tumour suppressors p53 and Rb, is not known to be involved in the pathogenesis of human insulinoma. The proto-oncogene, c-myc is implicated in beta-cell growth in both diabetes and tumorigenesis. Activation of Myc appears to be an early event in progression of human insulinoma. The effect of deregulated Myc expression on adult beta-cells in vivo has recently been investigated by developing transgenic mouse models in which the activity of Myc can be regulated ectopically. Although Myc activation initially promotes both proliferation and apoptosis in pancreatic beta-cells, apoptosis is the predominant outcome, giving rise to islet involution and diabetes. Importantly, inhibiting Myc-induced apoptosis (by co-expression of Bcl-x(L)) leads to significantly enlarged islets, many becoming highly vascularized, hyperplastic and invasive. These results suggest that, in the pancreatic beta-cells, early suppression of apoptosis is essential for the survival of Myc-activated beta-cells and islet neoplasia.

Free access

YunFeng Cui and Dana K Andersen

Epidemiological studies clearly indicate that the risk of pancreatic cancer (PC) is increased in diabetic patients, but most studies focus on overall diabetes or type 2 diabetes mellitus (T2DM), and there are few studies on the risks of type 1 and type 3c (secondary) diabetes. Possible mechanisms for increased cancer risk in diabetes include cellular proliferative effects of hyperglycemia, hyperinsulinemia, and abnormalities in insulin/IGF receptor pathways. Recently, insulin and insulin secretagogues have been observed to increase the PC risk, while metformin treatment reduces the cancer risk in diabetic subjects. In addition, anticancer drugs used to treat PC may either cause diabetes or worsen coexisting diabetes. T3cDM has emerged as a major subset of diabetes and may have the highest risk of pancreatic carcinoma especially in patients with chronic pancreatitis. T3cDM is also a consequence of PC in at least 30% of patients. Distinguishing T3cDM from the more prevalent T2DM among new-onset diabetic patients can be aided by an assessment of clinical features and confirmed by finding a deficiency in postprandial pancreatic polypeptide release. In conclusion, diabetes and PC have a complex relationship that requires more clinical attention. The risk of developing PC can be reduced by aggressive prevention and treatment of T2DM and obesity and the prompt diagnosis of T3cDM may allow detection of a tumor at a potentially curable stage.

Free access

Paolo Vigneri, Francesco Frasca, Laura Sciacca, Giuseppe Pandini, and Riccardo Vigneri

Diabetes and cancer are two heterogeneous, multifactorial, severe, and chronic diseases. Because of their frequency, reciprocal influences – even minor influences – may have a major impact. Epidemiological studies clearly indicate that the risk of several types of cancer (including pancreas, liver, breast, colorectal, urinary tract, and female reproductive organs) is increased in diabetic patients. Mortality is also moderately increased. Several confounding factors, having general or site-specific relevance, make it difficult to accurately assess cancer risk in diabetic patients. These factors include diabetes duration, varying levels of metabolic control, different drugs used for therapy, and the possible presence of chronic complications. Hyperinsulinemia most likely favors cancer in diabetic patients as insulin is a growth factor with pre-eminent metabolic but also mitogenic effects, and its action in malignant cells is favored by mechanisms acting at both the receptor and post-receptor level. Obesity, hyperglycemia, and increased oxidative stress may also contribute to increased cancer risk in diabetes. While anti-diabetic drugs have a minor influence on cancer risk (except perhaps the biguanide metformin that apparently reduces the risk), drugs used to treat cancer may either cause diabetes or worsen a pre-existing diabetes. In addition to the well-known diabetogenic effect of glucocorticoids and anti-androgens, an increasing number of targeted anti-cancer molecules may interfere with glucose metabolism acting at different levels on the signaling substrates shared by IGF-I and insulin receptors. In conclusion, diabetes and cancer have a complex relationship that requires more clinical attention and better-designed studies.

Free access

Mathis Grossmann and Gary Wittert

Metabolic disorders such as diabetes, obesity and the metabolic syndrome have been shown to modulate prostate cancer (PCa) risk and aggressiveness in population-based and experimental studies. While associations between these conditions are modest and complex, two consistent findings have emerged. First, there is observational evidence that obesity and associated insulin excess are linked to increased PCa aggressiveness and worse outcomes. Secondly and somewhat paradoxically, long-standing diabetes may be protective against PCa development. This apparent paradox may be due to the fact that long-standing diabetes is associated with insulin depletion and decreased IGF1 signalling. Men with obesity or diabetes have moderate reductions in their androgen levels. The interconnectedness of metabolic and androgen status complicates the dissection of the individual roles of these factors in PCa development and progression. Metabolic factors and androgens may promote prostate carcinogenesis via multiple mechanisms including inflammation, adipokine action, fatty acid metabolism and IGF signalling. Moreover, androgen deprivation, given to men with PCa, has adverse metabolic consequences that need to be taken into account when estimating the risk benefit ratio of this therapy. In this review, we will discuss the current epidemiological and mechanistic evidence regarding the interactions between metabolic conditions, sex steroids and PCa risk and management.

Free access

Mieke E R Henfling, Aurel A Perren, Anja M Schmitt, Christiane M Saddig, Achim A Starke, Robert G Riedl, Yvonne M H Versleijen-Jonkers, Diana M Sprij-Mooij, Frans C S Ramaekers, Leo J Hofland, and Ernst-Jan M Speel

Clinical and molecular studies have implicated epidermal growth factor receptor (EGFR), insulin-like growth factor (IGF) and target of rapamycin (mTOR) signaling pathways in the regulation of pancreatic neuroendocrine tumor (PanNET) growth. Interpretation and comparison of these studies is complex due to clinical and molecular tumor heterogeneity. We therefore focused in this study on insulinomas, which we examined for mRNA and protein expression of EGFR, IGF and mTOR signaling pathway components by quantitative real-time PCR (n = 48) and immunohistochemistry (n = 86). Findings were compared with normal pancreatic islets and correlated with histopathological data and clinical outcome. Insulinomas showed low EGFR and high IGF2 expression. IGFBP2, IGFBP3 and IGFBP6 mRNA levels were 2- to 4-folds higher than those in islets. High protein expression of IGF2, IGF1R and INSR (in 51–92% of the tumors) and low-to-moderate expression of mTORC1 pathway proteins p-S6k and p-4EBP1 (7–28% of the tumors) were observed. Correlations were found between (1) ERK1 mRNA expression and that of numerous IGF pathway genes, (2) p-ERK and IGF1R protein expression and (3) decrease of IGF pathway components and both metastatic disease and shorter 10-year disease-free survival. In conclusion, our observations suggest that high expression of IGF signaling pathway components is a hallmark of insulinomas, but does not necessarily lead to increased mTOR signaling. Reduced expression of IGF pathway components may be an adverse prognostic factor in insulinomas.

Free access

S Fontanière, J Tost, A Wierinckx, J Lachuer, J Lu, N Hussein, F Busato, I Gut, Z-Q Wang, and C-X Zhang

Mutations of the MEN1 gene lead to the occurrence of multiple endocrine neoplasia type 1 (MEN1). To gain insights into the mechanisms of the tumorigenesis related to MEN1 inactivation, we have used mice in which the Men1 gene was specifically disrupted in pancreatic β-cells. In these mice, we observed full penetrance of insulinoma with defined histological characteristics of tumorigenesis. To identify the genetic factors taking part in the tumour development, we performed gene expression profiling analysis of these insulinomas at different stages. Here, we show that in late stage insulinomas, 56 genes are up-regulated and 194 are down-regulated more than fourfold compared with normal pancreatic islets. Clustering analysis reveals the deregulation of Hox gene family and the genes involved in cell proliferation and cell cycle control. The altered expression of Igf2, Igfbp3 and Igfbp6 as well as cyclin A2, B2 and D2 are confirmed by quantitative RT-PCR, with the overexpression of all the three cyclins found in early stage insulinomas. Moreover, an increased proportion of cyclin A2- and D2-expressing cells and the overexpression of insulin-like growth factor 2 (IGF2) protein are detected in mouse Men1 insulinomas by immunostaining. Interestingly, the analysis of DNA methylation patterns by quantitative serial pyrosequencing reveals that four specific CpGs in the intragenic differentially methylated region 2 (DMR2) region of the Igf2 gene known to augment transcription through methylation are significantly hypermethylated in insulinomas of Men1 β-cell mutant mice at 6 and 10 months of age, even before IGF2 overexpression can be detected. Thus, our data indicate the involvement of both genetic and epigenetic mechanisms in early tumorigenesis of β-cells related to MEN1 inactivation.

Free access

Dara Hope Cohen and Derek LeRoith

Epidemiological studies suggest a positive association between obesity and type 2 diabetes mellitus (T2D) with the risk of cancer and cancer-related mortality. Insulin resistance, hyperinsulinemia, increased levels of IGF, elevated levels of steroid and peptide hormones, and inflammatory markers appear to play a role in the connection between these different diseases. Medications, such as metformin and exogenous insulin, used to treat T2D may affect the risk of cancer and cancer-related mortality. Newer therapies targeting the insulin and IGF1 systems are being developed for use in cancer therapy.

Open access

K M Biernacka, R A Persad, A Bahl, D Gillatt, J M P Holly, and C M Perks

The incidence of many common cancers varies between different populations and appears to be affected by a Western lifestyle. Highly proliferative malignant cells require sufficient levels of nutrients for their anabolic activity. Therefore, targeting genes and pathways involved in metabolic pathways could yield future therapeutics. A common pathway implicated in energetic and nutritional requirements of a cell is the LKB1/AMPK pathway. Metformin is a widely studied anti-diabetic drug, which improves glycaemia in patients with type 2 diabetes by targeting this pathway. We investigated the effect of metformin on prostate cancer cell lines and evaluated its mechanism of action using DU145, LNCaP, PC3 and VCaP prostate cancer cell lines. Trypan blue dye-exclusion assay was used to assess levels of cell death. Western immunoblotting was used to determine the abundance of proteins. Insulin-like growth factor-binding protein-2 (IGFBP-2) and AMPK genes were silenced using siRNA. Effects on cell morphology were visualised using microscopy. IGFBP-2 gene expression was assessed using real-time RT-PCR. With DU145 and LNCaP cells metformin alone induced cell death, but this was reduced in hyperglycaemic conditions. Hyperglycaemia also reduced the sensitivity to Docetaxel, but this was countered by co-treatment with metformin. LKB1 was required for the activation of AMPK but was not essential to mediate the induction of cell death. An alternative pathway by which metformin exerted its action was through downregulation of IGFBP-2 in DU145 and LNCaP cells, independently of AMPK. This finding could have important implications in relation to therapeutic strategies in prostate cancer patients presenting with diabetes.

Restricted access

A J Krentz, D Mayer, S P Olliff, C J Bailey, L J Libman, and M Nattrass


A 67-year-old man with intractable hypoglycaemia due to a malignant pancreatic insulinoma with multiple hepatic metastases is reported. Continuous intravenous infusion of dextrose was necessary to prevent life-threatening hypoglycaemia; high-dose parenteral octreotide was ineffective and oral diazoxide was associated with intolerable gastrointestinal side-effects. Preoperative imaging failed to identify the primary tumour with certainty. At laparotomy, the tumour was located in the pancreas and excised. Intraoperative cryotherapy was administered to hepatic metastases inducing localised ice-ball formation and subsequent necrosis of the lesions. These interventions led to prompt resolution of the hypoglycaemia with normalisation of plasma concentrations of islet B-cell products. In an effort to consolidate the beneficial effects of surgery, chemotherapy was instituted post-operatively using the islet B-cell toxin streptozotocin. In an innovative therapeutic approach, the drug was infused via the hepatic artery for 5 consecutive days at a reduced dose calculated to induce an insulitis in the residual hepatic metastases analogous to that described in murine models of diabetes. The chemotherapy was well tolerated although the course of treatment was curtailed by problems with catheter placement. Nonetheless, the patient has, to date, remained well and free from hypoglycaemia during more than 3 years of follow-up. These therapeutic strategies appear to merit further evaluation.

Endocrine-Related Cancer (1996) 3 341-345

Free access

Sefirin Djiogue, Armel Hervé Nwabo Kamdje, Lorella Vecchio, Maulilio John Kipanyula, Mohammed Farahna, Yousef Aldebasi, and Paul Faustin Seke Etet

Insulin, IGF1, and IGF2 are the most studied insulin-like peptides (ILPs). These are evolutionary conserved factors well known as key regulators of energy metabolism and growth, with crucial roles in insulin resistance-related metabolic disorders such as obesity, diseases like type 2 diabetes mellitus, as well as associated immune deregulations. A growing body of evidence suggests that insulin and IGF1 receptors mediate their effects on regulating cell proliferation, differentiation, apoptosis, glucose transport, and energy metabolism by signaling downstream through insulin receptor substrate molecules and thus play a pivotal role in cell fate determination. Despite the emerging evidence from epidemiological studies on the possible relationship between insulin resistance and cancer, our understanding on the cellular and molecular mechanisms that might account for this relationship remains incompletely understood. The involvement of IGFs in carcinogenesis is attributed to their role in linking high energy intake, increased cell proliferation, and suppression of apoptosis to cancer risks, which has been proposed as the key mechanism bridging insulin resistance and cancer. The present review summarizes and discusses evidence highlighting recent advances in our understanding on the role of ILPs as the link between insulin resistance and cancer and between immune deregulation and cancer in obesity, as well as those areas where there remains a paucity of data. It is anticipated that issues discussed in this paper will also recover new therapeutic targets that can assist in diagnostic screening and novel approaches to controlling tumor development.