Search Results

You are looking at 1 - 10 of 447 items for

  • Abstract: Prostate x
  • Abstract: Androgen x
  • Abstract: Steroids x
  • Abstract: Testosterone x
  • Abstract: AAWS x
  • Abstract: Enzalutamide x
  • Abstract: DHEA x
  • Abstract: ACTH x
Clear All Modify Search
Free access

Fernand Labrie

The discovery of medical castration with GnRH agonists in 1979 rapidly replaced surgical castration and high doses of estrogens for the treatment of prostate cancer. Soon afterwards, it was discovered that androgens were made locally in the prostate from the inactive precursor DHEA of adrenal origin, a mechanism called intracrinology. Taking into account these novel facts, combined androgen blockade (CAB) using a pure antiandrogen combined with castration in order to block the two sources of androgens was first published in 1982. CAB was the first treatment shown in randomized and placebo-controlled trials to prolong life in prostate cancer, even at the metastatic stage. Most importantly, the results recently obtained with the novel pure antiandrogen enzalutamide as well as with abiraterone, an inhibitor of 17α-hydroxylase in castration-resistant prostate cancer, has revitalized the CAB concept. The effects of CAB observed on survival of heavily pretreated patients further demonstrates the importance of the androgens made locally in the prostate and are a strong motivation to apply CAB to efficiently block all sources of androgens earlier at start of treatment and, even better, before metastasis occurs. The future of research in this field thus seems to be centered on the development of more potent blockers of androgens formation and action in order to obtain better results at the metastatic stage and, for the localized stage, reduce the duration of treatment required to achieve complete apoptosis and control of prostate cancer proliferation before it reaches the metastatic or noncurable stage.

Free access

Atsushi Mizokami, Eitetsu Koh, Kouji Izumi, Kazutaka Narimoto, Masashi Takeda, Seijiro Honma, Jinlu Dai, Evan T Keller and Mikio Namiki

One of the mechanisms through which advanced prostate cancer (PCa) usually relapses after androgen deprivation therapy (ADT) is the adaptation to residual androgens in PCa tissue. It has been observed that androgen biosynthesis in PCa tissue plays an important role in this adaptation. In the present study, we investigated how stromal cells affect adrenal androgen dehydroepiandrosterone (DHEA) metabolism in androgen-sensitive PCa LNCaP cells. DHEA alone had little effect on prostate-specific antigen (PSA) promoter activity and the proliferation of LNCaP cells. However, the addition of prostate stromal cells or PCa-derived stromal cells (PCaSC) increased DHEA-induced PSA promoter activity via androgen receptor activation in the LNCaP cells. Moreover, PCaSC stimulated the proliferation of LNCaP cells under physiological concentrations of DHEA. Biosynthesis of testosterone or dihydrotestosterone from DHEA in stromal cells and LNCaP cells was involved in this stimulation of LNCaP cell proliferation. Androgen biosynthesis from DHEA depended upon the activity of various steroidogenic enzymes present in stromal cells. Finally, the dual 5α-reductase inhibitor dutasteride appears to function not only as a 5α-reductase inhibitor but also as a 3β-hydroxysteroid dehydrogenase inhibitor in LNCaP cells. Taken together, this coculture assay system provides new insights of coordinate androgen biosynthesis under the microenvironment of PCa cells before and after ADT, and offers a model system for the identification of important steroidogenic enzymes involved in PCa progression and for the development of the corresponding inhibitors of androgen biosynthesis.

Restricted access

M J Reed, A Purohit, L W L Woo and B V L Potter

Introduction

Steroid sulphatases regulate many important physiological processes, including the formation of neurosteroids, some aspects of reproductive function and part of the immune response. Dehydroepiandrosterone sulphatase in macrophages regulates the progression of T0 helper cells to the Th1 phenotype (Daynes et al. 1993, Rook et al. 1994) which secrete cytokines which may be involved in the development of some autoimmune diseases. However, their pivotal role in regulating oestrogen synthesis in endocrine-dependent tumours has been the greatest stimulus in developing potent steroid sulphatase inhibitors. Carlstrom et al. (1984a) made the initial observation that danazol, an isoxazole derivative of 17α-ethinyl testosterone, possessed steroid sulphatase inhibitory properties when it was found that the ratio of dehydroepiandrosterone sulphate (DHEA-S) to unconjugated DHEA increased in women treated with this drug for endometriosis. Subsequent in vitro studies confirmed the ability of danazol to inhibit DHEA sulphatase activity in breast tissues (Carlstrom et al. 1984b).

Open access

Jonathan W Nyce

The activation of TP53 is well known to exert tumor suppressive effects. We have detected a primate-specific adrenal androgen-mediated tumor suppression system in which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has been inactivated. DHEA is an uncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems because it becomes irreversible in the presence of high concentrations of substrate and inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific sequence motif that disables an activating regulatory site in the glucose-6-phosphatase (G6PC) promoter was also required to enable function of this previously unrecognized tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate concentration. The triggering of these enzymes in the TP53-affected cell combines with the primate-specific G6PC promoter sequence motif that enables G6P substrate accumulation, driving uncompetitive inhibition of G6PD to irreversibility and ROS-mediated cell death. By this catastrophic ‘kill switch’ mechanism, TP53 mutations are effectively prevented from initiating tumorigenesis in the somatic cells of humans, the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human tumors therefore represent fossils of kill switch failure resulting from an age-related decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.

Free access

R Kaaks, S Rinaldi, T J Key, F Berrino, P H M Peeters, C Biessy, L Dossus, A Lukanova, S Bingham, K-T Khaw, N E Allen, H B Bueno-de-Mesquita, C H van Gils, D Grobbee, H Boeing, P H Lahmann, G Nagel, J Chang-Claude, F Clavel-Chapelon, A Fournier, A Thiébaut, C A González, J R Quirós, M-J Tormo, E Ardanaz, P Amiano, V Krogh, D Palli, S Panico, R Tumino, P Vineis, A Trichopoulou, V Kalapothaki, D Trichopoulos, P Ferrari, T Norat, R Saracci and E Riboli

Considerable experimental and epidemiological evidence suggests that elevated endogenous sex steroids — notably androgens and oestrogens — promote breast tumour development. In spite of this evidence, postmenopausal androgen replacement therapy with dehydroepiandrosterone (DHEA) or testosterone has been advocated for the prevention of osteoporosis and improved sexual well-being. We have conducted a case–control study nested within the European Prospective Investigation into Cancer and Nutrition. Levels of DHEA sulphate (DHEAS), (Δ4-androstenedione), testosterone, oestrone, oestradiol and sex-hormone binding globulin (SHBG) were measured in prediagnostic serum samples of 677 postmenopausal women who subsequently developed breast cancer and 1309 matched control subjects. Levels of free testosterone and free oestradiol were calculated from absolute concentrations of testosterone, oestradiol and SHBG. Logistic regression models were used to estimate relative risks of breast cancer by quintiles of hormone concentrations. For all sex steroids –the androgens as well as the oestrogens – elevated serum levels were positively associated with breast cancer risk, while SHBG levels were inversely related to risk. For the androgens, relative risk estimates (95% confidence intervals) between the top and bottom quintiles of the exposure distribution were: DHEAS 1.69 (1.23–2.33), androstenedione 1.94 (1.40–2.69), testosterone 1.85 (1.33–2.57) and free testosterone 2.50 (1.76–3.55). For the oestrogens, relative risk estimates were: oestrone 2.07 (1.42–3.02), oestradiol 2.28 (1.61–3.23) and free oestradiol (odds ratios 2.13 (1.52–2.98)). Adjustments for body mass index or other potential confounding factors did not substantially alter any of these relative risk estimates. Our results have shown that, among postmenopausal women, not only elevated serum oestrogens but also serum androgens are associated with increased breast cancer risk. Since DHEAS and androstenedione are largely of adrenal origin in postmenopausal women, our results indicated that elevated adrenal androgen synthesis is a risk factor for breast cancer. The results from this study caution against the use of DHEA(S), or other androgens, for postmenopausal androgen replacement therapy.

Open access

Simon Linder, Henk G van der Poel, Andries M Bergman, Wilbert Zwart and Stefan Prekovic

The androgen receptor drives the growth of metastatic castration-resistant prostate cancer. This has led to the development of multiple novel drugs targeting this hormone-regulated transcription factor, such as enzalutamide – a potent androgen receptor antagonist. Despite the plethora of possible treatment options, the absolute survival benefit of each treatment separately is limited to a few months. Therefore, current research efforts are directed to determine the optimal sequence of therapies, discover novel drugs effective in metastatic castration-resistant prostate cancer and define patient subpopulations that ultimately benefit from these treatments. Molecular studies provide evidence on which pathways mediate treatment resistance and may lead to improved treatment for metastatic castration-resistant prostate cancer. This review provides, firstly a concise overview of the clinical development, use and effectiveness of enzalutamide in the treatment of advanced prostate cancer, secondly it describes translational research addressing enzalutamide response vs resistance and lastly highlights novel potential treatment strategies in the enzalutamide-resistant setting.

Free access

KeeMing Chia, Heloisa Milioli, Neil Portman, Geraldine Laven-Law, Rhiannon Coulson, Aliza Yong, Davendra Segara, Andrew Parker, Catherine E Caldon, Niantao Deng, Alexander Swarbrick, Wayne D Tilley, Theresa E Hickey and Elgene Lim

The role of androgen receptor (AR) in endocrine-resistant breast cancer is controversial and clinical trials targeting AR with an AR antagonist (e.g., enzalutamide) have been initiated. Here, we investigated the consequence of AR antagonism using in vitro and in vivo models of endocrine resistance. AR antagonism in MCF7-derived tamoxifen-resistant (TamR) and long-term estrogen-deprived breast cancer cell lines were achieved using siRNA-mediated knockdown or pharmacological inhibition with enzalutamide. The efficacy of enzalutamide was further assessed in vivo in an estrogen-independent endocrine-resistant patient-derived xenograft (PDX) model. Knockdown of AR inhibited the growth of the endocrine-resistant cell line models. Microarray gene expression profiling of the TamR cells following AR knockdown revealed perturbations in proliferative signaling pathways upregulated in endocrine resistance. AR loss also increased some canonical ER signaling events and restored sensitivity of TamR cells to tamoxifen. In contrast, enzalutamide did not recapitulate the effect of AR knockdown in vitro, even though it inhibited canonical AR signaling, which suggests that it is the non-canonical AR activity that facilitated endocrine resistance. Enzalutamide had demonstrable efficacy in inhibiting AR activity in vivo but did not affect the growth of the endocrine-resistant PDX model. Our findings implicate non-canonical AR activity in facilitating an endocrine-resistant phenotype in breast cancer. Unlike canonical AR signaling which is inhibited by enzalutamide, non-canonical AR activity is not effectively antagonized by enzalutamide, and this has important implications in the design of future AR-targeted clinical trials in endocrine-resistant breast cancer.

Free access

Francesco Caiazza, Alyson Murray, Stephen F Madden, Naoise C Synnott, Elizabeth J Ryan, Norma O’Donovan, John Crown and Michael J Duffy

Abstract

The androgen receptor (AR) is present in approximately 80% of invasive breast cancer patients and in up to 30% of patients with triple-negative breast cancer (TNBC). Therefore, our aim was to investigate the targeting of AR as a possible hormonal approach to the treatment of TNBC. Analysis of 2091 patients revealed an association between AR expression and poor overall survival, selectively in patients with the basal subtype of breast cancer, the vast majority of which are TNBC. IC50 values for the second-generation anti-androgen enzalutamide across 11 breast cancer cell lines varied from 4 µM to >50 µM. The activity of enzalutamide was similar in TN and non-TN cell lines but was dependent on the presence of AR. Enzalutamide reduced clonogenic potential and cell growth in a 3D matrix in AR-positive cells. In addition, enzalutamide also inhibited cell migration and invasion in an AR-dependent manner. Enzalutamide appeared to mediate these processes through down-regulation of the transcription factors AP-1 and SP-1. The first-generation anti-androgen flutamide similarly blocked cell growth, migration and invasion. AR-positive TNBC cells clustered separately from AR-negative cells based on an androgen-related gene expression signature, independently of TNBC subtype. We conclude that targeting of the AR with drugs such as enzalutamide may provide an alternative treatment strategy for patients with AR-positive TNBC.

Free access

S Prekovic, T Van den Broeck, S Linder, M E van Royen, A B Houtsmuller, F Handle, S Joniau, W Zwart and F Claessens

Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.

Free access

Christy G Woolcott, Yurii B Shvetsov, Frank Z Stanczyk, Lynne R Wilkens, Kami K White, Christian Caberto, Brian E Henderson, Loïc Le Marchand, Laurence N Kolonel and Marc T Goodman

To add to the existing evidence that comes mostly from White populations, we conducted a nested case–control study to examine the association between sex hormones and breast cancer risk within the Multiethnic Cohort that includes Japanese American, White, Native Hawaiian, African American, and Latina women. Of the postmenopausal women for whom we had a plasma sample, 132 developed breast cancer during follow-up. Two controls per case, matched on study area (Hawaii, Los Angeles), ethnicity/race, birth year, date and time of blood draw and time fasting, were randomly selected from the women who had not developed breast cancer. Levels of estradiol (E2), estrone (E1), androstenedione, dehydroepiandrosterone (DHEA), and testosterone were quantified by RIA after organic extraction and Celite column partition chromatography. E1 sulfate, DHEA sulfate (DHEAS), and sex hormone-binding globulin (SHBG) were quantified by direct immunoassays. Based on conditional logistic regression, the sex hormones were positively associated and SHBG was negatively associated with breast cancer risk. All associations, except those with DHEAS and testosterone showed a significant linear trend. The odds ratio (OR) associated with a doubling of E2 levels was 2.26 (95% confidence interval (CI) 1.58–3.25), and the OR associated with a doubling of testosterone levels was 1.34 (95% CI 0.98–1.82). The associations in Japanese American women, who constituted 54% of our sample, were similar to or nonsignificantly stronger than in the overall group. This study provides the best evidence to date that the association between sex hormones and breast cancer risk is generalizable to an ethnically diverse population.