Search Results

You are looking at 1 - 10 of 489 items for

  • Abstract: MEN* x
  • Abstract: RET x
  • Abstract: Neuroendocrine x
  • Abstract: Neoplasia x
Clear All Modify Search
Free access

Sara Redaelli, Ivan Plaza-Menacho and Luca Mologni

The rearranged during transfection (RET) proto-oncogene was recognized as the multiple endocrine neoplasia type 2 (MEN2) causing gene in 1993. Since then, much effort has been put into a clear understanding of its oncogenic signaling, its biochemical function and ways to block its aberrant activation in MEN2 and related cancers. Several small molecules have been designed, developed or redirected as RET inhibitors for the treatment of MEN2 and sporadic MTC. However, current drugs are mostly active against several other kinases, as they were not originally developed for RET. This limits efficacy and poses safety issues. Therefore, there is still much to do to improve targeted MEN2 treatments. New, more potent and selective molecules, or combinatorial strategies may lead to more effective therapies in the near future. Here, we review the rationale for RET targeting in MEN2, the use of currently available drugs and novel preclinical and clinical RET inhibitor candidates.

Free access

Iván Plaza-Menacho

It has been twenty-five years since the discovery of oncogenic germline RET mutations as the cause of multiple endocrine neoplasia type 2 (MEN2). Intensive work over the last two and a half decades on RET genetics, signaling and cell biology has provided the current bases for the genotype–phenotype and functional correlations within this cancer syndrome. On the contrary, the structural and molecular basis for RET tyrosine kinase domain activation and oncogenic deregulation has remained largely elusive. Recent studies with a strong crystallographic and biochemical focus have started to elucidate key insights into such molecular and atomic details revealing unexpected and private mechanisms of actions and molecular determinants not previously envisioned. This review focuses on the structure and function of the RET receptor, and in particular, on what a more detailed view of the protein itself and what the current structural and molecular information tell us about the genotype and phenotype relationships in the cancer syndrome MEN2.

Free access

Aguirre A de Cubas, L Javier Leandro-García, Francesca Schiavi, Veronika Mancikova, Iñaki Comino-Méndez, Lucía Inglada-Pérez, Manuel Perez-Martinez, Nuria Ibarz, Pilar Ximénez-Embún, Elena López-Jiménez, Agnieszka Maliszewska, Rocío Letón, Álvaro Gómez Graña, Carmen Bernal, Cristina Álvarez-Escolá, Cristina Rodríguez-Antona, Giuseppe Opocher, Javier Muñoz, Diego Megias, Alberto Cascón and Mercedes Robledo

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare neuroendocrine neoplasias of neural crest origin that can be part of several inherited syndromes. Although their mRNA profiles are known to depend on genetic background, a number of questions related to tumor biology and clinical behavior remain unanswered. As microRNAs (miRNAs) are key players in the modulation of gene expression, their comprehensive analysis could resolve some of these issues. Through characterization of miRNA profiles in 69 frozen tumors with germline mutations in the genes SDHD, SDHB, VHL, RET, NF1, TMEM127, and MAX, we identified miRNA signatures specific to, as well as common among, the genetic groups of PCCs/PGLs. miRNA expression profiles were validated in an independent series of 30 composed of VHL-, SDHB-, SDHD-, and RET-related formalin-fixed paraffin-embedded PCC/PGL samples using quantitative real-time PCR. Upregulation of miR-210 in VHL- and SDHB-related PCCs/PGLs was verified, while miR-137 and miR-382 were confirmed as generally upregulated in PCCs/PGLs (except in MAX-related tumors). Also, we confirmed overexpression of miR-133b as VHL-specific miRNAs, miR-488 and miR-885-5p as RET-specific miRNAs, and miR-183 and miR-96 as SDHB-specific miRNAs. To determine the potential roles miRNAs play in PCC/PGL pathogenesis, we performed bioinformatic integration and pathway analysis using matched mRNA profiling data that indicated a common enrichment of pathways associated with neuronal and neuroendocrine-like differentiation. We demonstrated that miR-183 and/or miR-96 impede NGF-induced differentiation in PC12 cells. Finally, global proteomic analysis in SDHB and MAX tumors allowed us to determine that miRNA regulation occurs primarily through mRNA degradation in PCCs/PGLs, which partially confirmed our miRNA–mRNA integration results.

Free access

Maria Domenica Castellone and Rosa Marina Melillo

Medullary thyroid carcinomas (MTC) arise from thyroid parafollicular, calcitonin-producing C-cells and can occur either as sporadic or as hereditary diseases in the context of familial syndromes, including multiple endocrine neoplasia 2A (MEN2A), multiple endocrine neoplasia 2B (MEN2B) and familial MTC (FMTC). In a large fraction of sporadic cases, and virtually in all inherited cases of MTC, activating point mutations of the RET proto-oncogene are found. RET encodes for a receptor tyrosine kinase protein endowed with transforming potential on thyroid parafollicular cells. As in other cancer types, microenvironmental factors play a critical role in MTC. Tumor-associated extracellular matrix, stromal cells and immune cells interact and influence the behavior of cancer cells both in a tumor-promoting and in a tumor-suppressing manner. Several studies have shown that, besides the neoplastic transformation of thyroid C-cells, a profound modification of tumor microenvironment has been associated to the RET FMTC/MEN2-associated oncoproteins. They influence the surrounding stroma, activating cancer-associated fibroblasts (CAFs), promoting cancer-associated inflammation and suppressing anti-cancer immune response. These mechanisms might be exploited to develop innovative anti-cancer therapies and novel prognostic tools in the context of familial, RET-associated MTC.

Free access

Yulong Li and William F Simonds

Familial syndromes of hyperparathyroidism, including multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), and the hyperparathyroidism-jaw tumor (HPT-JT), comprise 2–5% of primary hyperparathyroidism cases. Familial syndromes of hyperparathyroidism are also associated with a range of endocrine and nonendocrine tumors, including potential malignancies. Complications of the associated neoplasms are the major causes of morbidities and mortalities in these familial syndromes, e.g., parathyroid carcinoma in HPT-JT syndrome; thymic, bronchial, and enteropancreatic neuroendocrine tumors in MEN1; and medullary thyroid cancer and pheochromocytoma in MEN2A. Because of the different underlying mechanisms of neoplasia, these familial tumors may have different characteristics compared with their sporadic counterparts. Large-scale clinical trials are frequently lacking due to the rarity of these diseases. With technological advances and the development of new medications, the natural history, diagnosis, and management of these syndromes are also evolving. In this article, we summarize the recent knowledge on endocrine neoplasms in three familial hyperparathyroidism syndromes, with an emphasis on disease characteristics, molecular pathogenesis, recent developments in biochemical and radiological evaluation, and expert opinions on surgical and medical therapies. Because these familial hyperparathyroidism syndromes are associated with a wide variety of tumors in different organs, this review is focused on those endocrine neoplasms with malignant potential.

Free access

D Engelmann, D Koczan, P Ricken, U Rimpler, J Pahnke, Z Li and B M Pützer

Activating mutations in the Ret proto-oncogene are responsible for occurrence of multiple endocrine neoplasia (MEN) type 2A and 2B, and familial medullary thyroid carcinoma (FMTC). A striking genotype–phenotype correlation between the mutated RET codon and clinical manifestation implies that tumorigenesis is conditioned by the type of mutation. We investigated gene expression profiles between and within distinct MEN2 subtypes through whole-genome microarray analysis in tumors induced by NIH-3T3 cells transformed with defined RET-MEN2A (C609Y, C634R), MEN2B, (A883F, M918T), and FMTC (Y791F) mutations. Expression profiling identified a statistically significant modification of 1494 genes, 628 down- and 866 upregulated in MEN2B compared with MEN2A/FMTC tumors. By contrast, no obvious alterations were observed among individual MEN2B and MEN2A type mutations, or between MEN2A and FMTC. Functional clustering of differential genes revealed RET-MEN2B specific upregulation of genes associated with novel growth and survival pathways. Intriguingly, RET-MEN2A/FMTC-specific tumors were characterized by a considerable number of genes involved in the host antitumor immune response via stimulation of natural killer/T-cell proliferation, migration, and cytotoxicity, which were completely absent in RET-MEN2B related cancers. QPCR on tumors versus cultured NIH-RET cell lines demonstrated that they are largely attributed to the host innate immune system, whereas expression of CX3CL1 involved in leukocyte recruitment is exclusively RET-MEN2A/FMTC tumor cell dependent. In correlation, massive inflammatory infiltrates were apparent only in tumors carrying MEN type 2A/FMTC mutations, suggesting that RET-MEN2B receptors specifically counteract immune infiltration by preventing chemokine expression, which may contribute to the different clinical outcome of both subtypes.

Free access

Luis V Syro, Fabio Rotondo, Leon D Ortiz and Kalman Kovacs

Temozolomide is an alkylating chemotherapeutic agent used in malignant neuroendocrine neoplasia, melanoma, brain metastases and an essential component of adjuvant therapy in the treatment of glioblastoma multiforme and anaplastic astrocytoma. Since 2006, it has been used for the treatment of pituitary carcinomas and aggressive pituitary adenomas. Here, we discuss the current indications and results of temozolomide therapy in pituitary tumors, as well as frequently asked questions regarding temozolomide treatment, duration of therapy, dosage, tumor recurrence and resistance.

Free access

P H Kann, E Balakina, D Ivan, D K Bartsch, S Meyer, K-J Klose, Th Behr and P Langer

Endoscopic ultrasound (EUS) enables detection and localization of pancreatic neuroendocrine tumours. Even small tumours down to a diameter of 1–2 mm can be visualized. Since such small tumours usually cannot be detected by computed tomography (ct), magnetic resonance imaging (mri) and somatostatin receptor scintigraphy (srs), and experience with EUS imaging is limited, there is no clear evidence for clinical management in multiple endocrine neoplasia type 1 (MEN1). Knowledge about the natural course of growth and metastatic distribution is mandatory to come to appropriate clinical decisions and guidelines. This prospective study was aimed to assess the natural course of small (<15 mm) neuroendocrine pancreatic tumours without clinical symptoms due to endocrine activity or mechanical problems and without clear indication for surgical therapy in MEN1 by EUS.

A total of 82 asymptomatic tumours <15 mm (5.9 ± 3.2 mm diameter at baseline) in 20 patients with MEN1-disease (8 female/12 male, 43 ± 13 years) were studied over a period of 20 ± 12 months (33.8 patient years, 106.7 tumour years) by EUS. Change in largest diameter of each tumour and annual tumour incidence rate in the patients’ cohort were calculated.

Increase of largest tumour diameter was found to be 1.3 ± 3.2% per month, annual tumour incidence rate 0.62 new tumours per patient year. In one patient, rapid progressive pancreatic manifestation of MEN1 was observed. There was no evidence in ct and/or srs and/or mri for metastatic disease in all patients. Only 4/84 (4.8%) pancreatic tumours could be visualized by computed tomography, 5/79 (6.3%) by somatostatin receptor imaging and 4/39 (10.3%) by magnetic resonance imaging.

Small asymptomatic neuroendocrine pancreatic tumours in MEN1 usually seem to grow slowly. Annual tumour incidence rate is low. However, faster growing tumours and patients with rapidly progressive disease can be observed. Risk for obvious metastatic disease from asymptomatic neuroendocrine pancreatic tumours <15 mm in MEN1 seems to be low.

Free access

Jie Cai, Lin Li, Lei Ye, Xiaohua Jiang, Liyun Shen, Zhibo Gao, Weiyuan Fang, Fengjiao Huang, Tingwei Su, Yulin Zhou, Weiqing Wang and Guang Ning

Activating rearranged during transfection (RET) mutations function as the initiating causative mutation for multiple endocrine neoplasia type 2A (MEN2A). However, no conclusive findings regarding the non-RET genetic events have been reported. This is the first study, to our knowledge, examining genomic alterations in matched MEN2A-associated tumors. We performed exome sequencing and SNP array analysis of matched MEN2A tumors and germline DNA. Somatic alterations were validated in an independent set of patients using Sanger sequencing. Genes of functional interest were further evaluated. The germline RET mutation was found in all MEN2A-component tumors. Thirty-two somatic mutations were identified in the nine MEN2A-associated tumors, of which 28 (87.5%) were point mutations and 4 (12.5%) were small insertions, duplications, or deletions. We sequenced all the mutations as well as coding sequence regions of the 12 genes in an independent sample set including 35 medullary thyroid cancers (20 MEN2A) and 34 PCCs (22 MEN2A), but found no recurrent mutations. Recurrent alterations were found in 13 genes with either mutations or alterations in copy number, including an EIF4G1 mutation (p. E1147V). Mutation of EIF4G1 led to increased cell proliferation and RET/MAPK phosphorylation, while knockdown of EIF4G1 led to reduced cell proliferation and RET/MAPK phosphorylation in TT, MZ-CRC1, and PC-12 cells. We found fewer somatic mutations in endocrine tumors compared with non-endocrine tumors. RET was the primary driver in MEN2A-associated tumors. However, low-frequency alterations such as EIF4G1 might participate in MEN2A-associated tumorigenesis, possibly by regulating the activity of the RET pathway.

Free access

Jerena Manoharan, Max B Albers and Detlef K Bartsch

Prospective randomized data are lacking, but current clinical expert guidelines recommend annual screening examinations, including laboratory assessments and various imaging modalities (e.g. CT, MRI, scintigraphy and EUS) for patients with multiple endocrine neoplasia type 1 (MEN1). Routine screening is proposed to detect and localize neuroendocrine manifestations as early as possible. The goal is timely intervention to improve quality of life and to increase life expectancy by preventing the development of life-threatening hormonal syndromes and/or metastatic disease. In recent years, some studies compared different and new imaging methods regarding their sensitivity and utility in MEN1 patients. This present article reviews the proposed diagnostic tools for MEN1 screening as well as potential future perspectives.