Breast cancer and thyroid dysfunctions have been associated for decades. Although many studies suggest a biological correlation, the mechanisms linking these two pathologies have not been elucidated. Reactive oxygen species (ROS) can oxidize lipids, proteins, and DNA molecules and may promote tumor initiation. Hence, we aimed at evaluating the mammary redox balance and genomic instability in a model of experimental hypothyroidism. Female Wistar rats were treated with 0.03% methimazole for 7 or 21 days to evaluate ROS generation, antioxidant enzyme activities, and oxidative stress biomarkers, as well as genomic instability. After 7 days, lower catalase, GPX, and DUOX activities were detected in the breast of hypothyroid group compared to the control while the levels of 4-hydroxynonenal (HNE) were higher. In addition, hypothyroid group showed an increase in γH2Ax/H2Ax ratio. Twenty-one days hypothyroid group had increased catalase and SOD activities, without significant differences between groups in the levels of oxidative stress biomarkers and DNA damage. TSH-treated MCF10A cells showed a higher extracellular, intracellular, and mitochondrial ROS production. Additionally, greater DNA damage was observed in these cells, demonstrated by a higher comet tail DNA percentage and increased 53BP1 foci. Finally, we found that TSH treatment was not able to alter cell viability. The Genome Cancer Atlas (TGCA) data showed that high TSHR expression is associated with more invasive breast cancer types. In conclusion, we demonstrate that oxidative stress and DNA damage in breast are early events of experimental hypothyroidism. Moreover, high TSH levels induce oxidative stress and genomic instability in mammary cells.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Claudia Coelho x
- Refine by Access: All content x
Milena Simões Peixoto, Andressa de Vasconcelos e Souza, Iris Soares Andrade, Carolina de Carvalho el Giusbi, Caroline Coelho Faria, Fabio Hecht, Leandro Miranda-Alves, Andrea Claudia Freitas Ferreira, Denise Pires Carvalho, and Rodrigo S Fortunato
Pia Roser, Bianca M Leca, Claudia Coelho, Klaus-Martin Schulte, Jackie Gilbert, Eftychia E Drakou, Christos Kosmas, Ling Ling Chuah, Husam Wassati, Alexander D Miras, James Crane, Simon J B Aylwin, Ashley B Grossman, and Georgios K Dimitriadis
Parathyroid carcinoma is one of the least common endocrine malignancies and accounts for approximately 1% of all patients with primary hyperparathyroidism. A systematic review of peer-reviewed literature published between January 2000 and March 2022 via Medline, Embase, Cochrane Central Register of Controlled Trials, EudraCT, ClinicalTrials.gov, CINAHL and SCOPUS was conducted. Manuscripts were eligible if they included data on adult non-pregnant populations with parathyroid carcinoma. No restrictions regarding interventions, comparators or duration of follow-up were imposed. Single case reports, reviews or meta-analyses were excluded. Outcomes of interest were molecular pathogenesis, clinical presentation, differential diagnosis, treatment, follow-up and overall survival. Study quality was evaluated using the Newcastle–Ottawa Scale for observational studies.
This review included 75 studies from 17 countries, reporting on more than 3000 patients with parathyroid carcinoma. CDC73 mutation has been recognised as playing a pivotal role in molecular pathogenesis. Parathyroid carcinoma typically presents with markedly increased calcium and parathyroid hormone levels. The most frequently described symptoms were bone and muscle pain or weakness. En bloc resection remains the gold standard for the surgical approach. The 5-year overall survival ranged from 60 to 93%, with resistant hypercalcaemia a significant cause of mortality. Emerging evidence indicating that targeted therapy, based on molecular biomarkers, presents a novel treatment option. The rarity of PC and need for personalised treatment warrant multidisciplinary management in a ‘centre of excellence’ with a track record in PC management.