Search Results

You are looking at 1 - 10 of 17 items for

  • Author: Albert Beckers x
Clear All Modify Search
Full access

Adrian F Daly and Albert Beckers

This issue analyzes new work expanding the range of how genetic dysregulation of succinate dehydrogenase subunit (SDHx) genes can cause cancer syndromes with a prominent endocrine component, in this case Carney triad, which is characterized by gastrointestinal stromal tumors, paraganglioma, and pulmonary chondromas.

Full access

Vinciane Corman, Iulia Potorac, Florence Manto, Sarah Dassy, Karin Segers, Albert Thiry, Vincent Bours, Adrian F Daly and Albert Beckers

Breast cancer is rare in male patients. Certain predisposing factors, be they genetic (e.g., BRCA2 gene mutations) or hormonal (imbalance between estrogen and androgen levels), have been implicated in male breast cancer pathophysiology. Male-to-female (MtF) transsexualism is a condition that generally involves cross-sex hormone therapy. Anti-androgens and estrogens are used to mimic the female hormonal environment and induce the cross-sex secondary characteristics. In certain situations, the change in the hormonal milieu can be disadvantageous and favor the development of hormone-dependent pathologies, such as cancer. We report a case of a MtF transgender patient who developed breast cancer after 7 years of cross-sex hormonal therapy. The patient was found to be BRCA2 positive, and suffered recurrent disease. The patient was unaware of being a member of an established BRCA2 mutation-positive kindred. This represents the first case of a BRCA2 mutation predisposing to breast cancer in a MtF transgender patient.

Full access

Sathya Neelature Sriramareddy, Etienne Hamoir, Marcela Chavez, Renaud Louis, Albert Beckers and Luc Willems

Full access

Albert Beckers, Daniel Fernandes, Frederic Fina, Mario Novak, Angelo Abati, Liliya Rostomyan, Albert Thiry, L’Housine Ouafik, Bertrand Pasture, Ron Pinhasi and Adrian F Daly

Full access

Adrian F Daly, Emilie Castermans, Lindsey Oudijk, Mirtha A Guitelman, Pablo Beckers, Iulia Potorac, Sebastian J C M M Neggers, Nathalie Sacre, Aart-Jan van der Lely, Vincent Bours, Wouter W de Herder and Albert Beckers

Full access

Adrian F Daly, Philippe A Lysy, Céline Desfilles, Liliya Rostomyan, Amira Mohamed, Jean-Hubert Caberg, Veronique Raverot, Emilie Castermans, Etienne Marbaix, Dominique Maiter, Chloe Brunelle, Giampaolo Trivellin, Constantine A Stratakis, Vincent Bours, Christian Raftopoulos, Veronique Beauloye, Anne Barlier and Albert Beckers

X-linked acrogigantism (X-LAG) syndrome is a newly described form of inheritable pituitary gigantism that begins in early childhood and is usually associated with markedly elevated GH and prolactin secretion by mixed pituitary adenomas/hyperplasia. Microduplications on chromosome Xq26.3 including the GPR101 gene cause X-LAG syndrome. In individual cases random GHRH levels have been elevated. We performed a series of hormonal profiles in a young female sporadic X-LAG syndrome patient and subsequently undertook in vitro studies of primary pituitary tumor culture following neurosurgical resection. The patient demonstrated consistently elevated circulating GHRH levels throughout preoperative testing, which was accompanied by marked GH and prolactin hypersecretion; GH demonstrated a paradoxical increase following TRH administration. In vitro, the pituitary cells showed baseline GH and prolactin release that was further stimulated by GHRH administration. Co-incubation with GHRH and the GHRH receptor antagonist, acetyl-(d-Arg2)-GHRH (1-29) amide, blocked the GHRH-induced GH stimulation; the GHRH receptor antagonist alone significantly reduced GH release. Pasireotide, but not octreotide, inhibited GH secretion. A ghrelin receptor agonist and an inverse agonist led to modest, statistically significant increases and decreases in GH secretion, respectively. GHRH hypersecretion can accompany the pituitary abnormalities seen in X-LAG syndrome. These data suggest that the pathology of X-LAG syndrome may include hypothalamic dysregulation of GHRH secretion, which is in keeping with localization of GPR101 in the hypothalamus. Therapeutic blockade of GHRH secretion could represent a way to target the marked hormonal hypersecretion and overgrowth that characterizes X-LAG syndrome.

Full access

Giampaolo Trivellin, Ricardo R Correa, Maria Batsis, Fabio R Faucz, Prashant Chittiboina, Ivana Bjelobaba, Darwin O Larco, Martha Quezado, Adrian F Daly, Stanko S Stojilkovic, T John Wu, Albert Beckers, Maya B Lodish and Constantine A Stratakis

Cushing’s disease (CD) in children is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. Germline or somatic mutations in genes such as MEN1, CDKIs, AIP, and USP8 have been identified in pediatric CD, but the genetic defects in a significant percentage of cases are still unknown. In this study, we investigated the orphan G-protein-coupled receptor GPR101, a gene known to be involved in somatotropinomas, for its possible involvement in corticotropinomas. We performed GPR101 sequencing, expression analyses by RT-qPCR and immunostaining, and functional studies (cell proliferation, pituitary hormone secretion, and cAMP measurement) in a series of patients with sporadic CD secondary to ACTH-secreting adenomas in whom we extracted DNA from peripheral blood and pituitary tumor samples (n=36). No increased GPR101 expression was observed in tumors compared with normal pituitary (NP) tissues, nor did we find a correlation between GPR101 and ACTH expression levels. Sequence analysis revealed a very rare germline heterozygous GPR101 variant (p.G31S) in one patient with CD. Overexpression of the p.G31S variant did not lead to increased growth and proliferation, although modest effects on cAMP signaling were observed. GPR101 is not overexpressed in ACTH-secreting tumors compared with NPs. In conclusion, rare germline GPR101 variant was found in one patient with CD, but in vitro studies did not support a consistent pathogenic effect. GPR101 is unlikely to be involved in the pathogenesis of CD.

Full access

Chiara Villa, Maria Stefania Lagonigro, Flavia Magri, Maria Koziak, Marie-Lise Jaffrain-Rea, Raja Brauner, Jerome Bouligand, Marie Pierre Junier, Federico Di Rocco, Christian Sainte-Rose, Albert Beckers, François Xavier Roux, Adrian F Daly and Luca Chiovato

Mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene are associated with pituitary adenomas that usually occur as familial isolated pituitary adenomas (FIPA). Detailed pathological and tumor genetic data on AIP mutation-related pituitary adenomas are not sufficient. Non-identical twin females presented as adolescents to the emergency department with severe progressive headache caused by large pituitary macroadenomas require emergency neurosurgery; one patient had incipient pituitary apoplexy. Post-surgically, the patients were found to have silent somatotrope adenomas on pathological examination. Furthermore, the light microscopic, immunohistochemical, and electron microscopic studies demonstrated tumors of virtually identical characteristics. The adenomas were accompanied by multiple areas of pituitary hyperplasia, which stained positively for GH, indicating somatotrope hyperplasia. Genetic analyses of the FIPA kindred revealed a novel E216X mutation of the AIP gene, which was present in both the affected patients and the unaffected father. Molecular analysis of surgical specimens revealed loss of heterozygosity (LOH) in the adenoma but showed that LOH was not present in the hyperplastic pituitary tissue from either patient. AIP immunostaining confirmed normal staining in the hyperplastic tissue and decreased staining in the adenoma in the tumors from both patients. These results demonstrate that patients with AIP germline mutation can present with silent somatotrope pituitary adenomas. The finding of somatotrope hyperplasia unaccompanied by AIP LOH suggests that LOH at the AIP locus might be a late event in a potential progression from hyperplastic to adenomatous tissue.

Full access

Marie-Lise Jaffrain-Rea, Sandra Rotondi, Annarita Turchi, Gianluca Occhi, Anne Barlier, Erika Peverelli, Lilya Rostomyan, Céline Defilles, Mariolina Angelini, Maria-Antonietta Oliva, Filippo Ceccato, Orlando Maiorani, Adrian F Daly, Vincenzo Esposito, Francesca Buttarelli, Dominique Figarella-Branger, Felice Giangaspero, Anna Spada, Carla Scaroni, Edoardo Alesse and Albert Beckers

Germline aryl hydrocarbon receptor interacting protein (AIP) gene mutations confer a predisposition to pituitary adenoma (PA), predominantly GH-secreting (GH-PA). As recent data suggest a role for AIP in the pathogenesis of sporadic GH-PA and their response to somatostatin analogues (SSA), the expression of AIP and its partner, aryl hydrocarbon receptor (AHR), was determined by semiquantitative immunohistochemistry scoring in 62 sporadic GH-PA (37 treated with SSA preoperatively). The influence of Gsp status was studied in a subset of tumours (n=39, 14 Gsp +) and six GH-PA were available for primary cultures. AIP and AHR were detected in most cases, with a positive correlation between AIP and cytoplasmic AHR (P=0.012). Low AIP expression was significantly more frequent in untreated vs SSA-treated tumours (44.0 vs 20.5%, P=0.016). AHR expression or localisation did not differ between the two groups. Similarly, in vitro octreotide induced a median twofold increase in AIP expression (range 1.2–13.9, P=0.027) in GH-PA. In SSA-treated tumours, the AIP score was significantly higher in the presence of preoperative IGF1 decrease or tumour shrinkage (P=0.008 and P=0.014 respectively). In untreated tumours, low AIP expression was significantly associated with invasiveness (P=0.028) and suprasellar extension (P=0.019). The only effect of Gsp status was a significantly lower nuclear AHR score in Gsp + vs Gsp tumours (P=0.025), irrespective of SSA. In conclusion, AIP is involved in the aggressiveness of sporadic GH-PA, regardless of Gsp status, and AIP up-regulation in SSA-treated tumours is associated with a better preoperative response, with no clear role for AHR.

Full access

Iulia Potorac, Patrick Petrossians, Adrian F Daly, Franck Schillo, Claude Ben Slama, Sonia Nagi, Mouna Sahnoun, Thierry Brue, Nadine Girard, Philippe Chanson, Ghaidaa Nasser, Philippe Caron, Fabrice Bonneville, Gérald Raverot, Véronique Lapras, François Cotton, Brigitte Delemer, Brigitte Higel, Anne Boulin, Stéphan Gaillard, Florina Luca, Bernard Goichot, Jean-Louis Dietemann, Albert Beckers and Jean-François Bonneville

Responses of GH-secreting adenomas to multimodal management of acromegaly vary widely between patients. Understanding the behavioral patterns of GH-secreting adenomas by identifying factors predictive of their evolution is a research priority. The aim of this study was to clarify the relationship between the T2-weighted adenoma signal on diagnostic magnetic resonance imaging (MRI) in acromegaly and clinical and biological features at diagnosis. An international, multicenter, retrospective analysis was performed using a large population of 297 acromegalic patients recently diagnosed with available diagnostic MRI evaluations. The study was conducted at ten endocrine tertiary referral centers. Clinical and biochemical characteristics, and MRI signal findings were evaluated. T2-hypointense adenomas represented 52.9% of the series, were smaller than their T2-hyperintense and isointense counterparts (P<0.0001), were associated with higher IGF1 levels (P=0.0001), invaded the cavernous sinus less frequently (P=0.0002), and rarely caused optic chiasm compression (P<0.0001). Acromegalic men tended to be younger at diagnosis than women (P=0.067) and presented higher IGF1 values (P=0.01). Although in total, adenomas had a predominantly inferior extension in 45.8% of cases, in men this was more frequent (P<0.0001), whereas in women optic chiasm compression of macroadenomas occurred more often (P=0.0067). Most adenomas (45.1%) measured between 11 and 20 mm in maximal diameter and bigger adenomas were diagnosed at younger ages (P=0.0001). The T2-weighted signal differentiates GH-secreting adenomas into subgroups with particular behaviors. This raises the question of whether the T2-weighted signal could represent a factor in the classification of acromegalic patients in future studies.