Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Alyaksandr V. Nikitski x
  • All content x
Clear All Modify Search
Restricted access

William Reed Doerfler, Alyaksandr V. Nikitski, Elena M. Morariu, N. Paul Ohori, Simion I Chiosea, Michael S. Landau, Marina Nikiforova, Yuri E Nikiforov, Linwah Yip, and Pooja Manroa

Hürthle cell carcinoma (HCC) is a distinct type of thyroid cancer genetically characterized by DNA copy number alterations (CNA), typically of genome haploidization type (GH-type). However, whether CNA also occur in benign Hürthle cell adenomas (HCA) or Hürthle cell hyperplastic nodules (HCHN), and have diagnostic impact in fine needle aspiration (FNA) samples, remains unknown. To address these questions, we (i) analyzed 26 HCC, 24 HCA, and 8 HCHN tissues for CNA and other mutations using ThyroSeq v3 (TSv3) next-generation sequencing panel, and (ii) determined cancer rate in 111 FNA samples with CNA and known surgical outcome. We identified CNA, more often of the GH-type, in 81% of HCC and in 38% HCA, but not in HCHN. Among 4 HCC with distant metastasis, all had CNA and 3 TERT mutations. Overall, positive TSv3 results were obtained in 24 (92%) HCC, including all with ATA high risk of recurrence or metastasis. Among 111 FNA cases with CNA, 38 (34%) were malignant, and 73 (66%) benign. A significant correlation between cancer rate and nodule size was observed, particularly among cases with GH-type CNA, where every additional centimeter of nodule size increased the malignancy odds by 1.9 (95% CI 1.3-2.7; P=0.001). In summary, the results of this study demonstrate that CNA characteristic of HCC also occur in HCA, although with lower frequency, and probability of cancer in nodules with CNA increases with nodule size. Detection of CNA, in conjunction with other mutations and nodule size, is helpful in predicting malignancy in thyroid nodules.

Free access

Federica Panebianco, Alyaksandr V Nikitski, Marina N Nikiforova, Cihan Kaya, Linwah Yip, Vincenzo Condello, Abigail I Wald, Yuri E Nikiforov, and Simion I Chiosea

ALK fusions are found in various tumors, including thyroid cancer, and serve as a diagnostic marker and therapeutic target. Spectrum and outcomes of ALK fusions found in thyroid nodules and cancer are not fully characterized. We report a series of 44 ALK-translocated thyroid neoplasms, including 31 identified preoperatively in thyroid fine-needle aspirates (FNA). The average patients’ age was 43 years (range, 8–76 years); only one with radiation history. All 19 resected thyroid nodules with ALK fusion identified preoperatively were malignant. Among nodules with known surgical pathology (n = 32), 84% were papillary thyroid carcinomas (PTCs) and 16% poorly differentiated thyroid carcinomas (PDTCs). PTCs showed infiltrative growth with follicular architecture seen exclusively (30%) or in combination with papillary and/or solid growth (37%). Tumor multifocality was seen in 10 (31%) PTC cases. Most PDTC had a well-differentiated PTC component. Lymph node metastases were identified in 10/18 (56%) patients with neck dissection. The most common ALK fusion partners were STRN (n = 22) and EML4 (n = 17). In five cases, novel ALK fusion partners were discovered. All five PDTCs carried STRN-ALK fusion. On follow-up, ten patients were free of disease at 2–108 months, whereas two patients with PDTC died of disease. In summary, ALK fusion-positive thyroid carcinomas are typically infiltrative PTC with common follicular growth, which may show tumor dedifferentiation associated with increased mortality. Compared to EML4-ALK, STRN-ALK may be more common in PDTC, and ~10% of ALK fusions occur to rare gene partners. When ALK fusion is detected preoperatively in FNA samples, malignancy should be expected.