Search Results

You are looking at 1 - 10 of 14 items for

  • Author: Anne Barlier x
  • All content x
Clear All Modify Search
Free access

Thomas Cuny, Wouter de Herder, Anne Barlier, and Leo J Hofland

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) represent a group of heterogeneous tumors whose incidence increased over the past few years. Around half of patients already present with metastatic disease at the initial diagnosis. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with metastatic GEP-NETs, mainly due to the development of a certain state of resistance. One factor contributing to both the failure of systemic therapies and the emergence of an aggressive tumor phenotype may be the tumor microenvironment (TME), comprising dynamic and adaptative assortment of extracellular matrix components and non-neoplastic cells, which surround the tumor niche. Accumulating evidence shows that the TME can simultaneously support both tumor growth and metastasis and contribute to a certain state of resistance to treatment. In this review, we summarize the current knowledge of the TME of GEP-NETs and discuss the current therapeutic agents that target GEP-NETs and those that could be of interest in the (near) future.

Free access

Carole Guerin, Pauline Romanet, David Taieb, Thierry Brue, André Lacroix, Frederic Sebag, Anne Barlier, and Frederic Castinetti

Over the last years, the knowledge of MEN2 and non-MEN2 familial forms of pheochromocytoma (PHEO) has increased. In MEN2, PHEO is the second most frequent disease: the penetrance and age at diagnosis depend on the mutation of RET. Given the prevalence of bilateral PHEO (50% by age 50), adrenal sparing surgery, aimed at sparing a part of the adrenal cortex to avoid adrenal insufficiency, should be systematically considered in patients with bilateral PHEO. Non-MEN2 familial forms of PHEO now include more than 20 genes: however, only small phenotypic series have been reported, suggesting that phenotypic features of isolated hereditary PHEO must be better explored, and follow-up series are needed to better understand the outcome of patients carrying mutations of these genes. The first part of this review will mainly focus on these points. In the second part, a focus will be given on MEN2 and non-MEN2 familial forms of hyperparathyroidism (HPTH). Again, the management of MEN2 HPTH should be aimed at curing the disease while preserving an optimal quality of life by a tailored parathyroidectomy. The phenotypes and outcome of MEN1-, MEN4- and HRPT2-related HPTH are briefly described, with a focus on the most recent literature data and is compared with familial hypocalciuric hypercalcemia.

Free access

Alexandru Saveanu, Mihaela Muresan, Catherine De Micco, David Taieb, Anne-Laure Germanetti, Frederic Sebag, Jean-François Henry, Laurent Brunaud, Alain Enjalbert, Georges Weryha, and Anne Barlier

While somatostatin receptors (sst), through somatostatin-radiolabeled analogs, are used, mainly in second line, in the diagnosis and treatment of pheochromocytomas (PCC) and paragangliomas (PGL), the clinical significance of dopamine receptor subtype 2 (D2) in PCC/PGL is unknown. Indeed, radiolabeled dopamine (DA) analogs such as fluorine 18 (18F)-DA, used for positron emission tomography in PCC localization, are mainly correlated to the presence of noradrenaline transporter (NAT) and vesicular monoamine transporters (VMAT) but not to D2. The aim of this study was to quantitate D2 and sst expression in 52 PCC/PGL and to compare it with that of 35 gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Quantitative RT-PCR of sst 1–3 and sst 5, D2, NAT, VMAT1/2 was performed in all tumors, while immunohistochemistry analysis of sst2 and D2 was performed in seven tumors. D2 mRNA was expressed in all PCC/PGL. Mean expression was significantly higher in PCC/PGL than in GEP-NETs (4.8 vs 0.5 copy/copy β-glucuronidase (Gus)). sst2 and sst1 were expressed in most PCC/PGL, with sst2-dominant expression (mean mRNA: 1.6 vs 0.4 copy/copy β-Gus). sst2 expression level was similar to that of GEP-NETs, whereas sst5 expression level was significantly lower (0.12 vs 0.78 copy/copy β-Gus). Our study evidenced strong D2 mRNA expression in PCC and for the first time in PGL. PCC/PGL express sst 2 mRNA at levels similar to those of GEP-NETs. New drugs can target ssts and D2 more efficiently than current somatostatin analogs. Moreover, transporters like NAT and VMAT1/2, could be co-targeted with sst, as a basis of new radionuclide compounds in the imaging and treatment of these tumors.

Open access

Thomas Cuny, Caroline Zeiller, Martin Bidlingmaier, Céline Défilles, Catherine Roche, Marie-Pierre Blanchard, Marily Theodoropoulou, Thomas Graillon, Morgane Pertuit, Dominique Figarella-Branger, Alain Enjalbert, Thierry Brue, and Anne Barlier

Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, the biological effect of PEG at the pituitary level remains unknown. To assess the impact of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and cellular viability of eight human GH-secreting tumors in primary cultures and of the rat somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent inhibition of GH secretion was observed under PEG with a maximum of 38.2±17% at 1μg/mL (P<0.0001 vs control). A dose-dependent inhibition of PRL secretion occurred in three mixed GH/PRL adenomas under PEG with a maximum of 52.8±11.5% at 10μg/mL (P<0.0001 vs control). No impact on proliferation of either human primary tumors or GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell viability or cell proliferation.

Free access

Amira Mohamed, Marie-Pierre Blanchard, Manuela Albertelli, Federica Barbieri, Thierry Brue, Patricia Niccoli, Jean-Robert Delpero, Genevieve Monges, Stephane Garcia, Diego Ferone, Tullio Florio, Alain Enjalbert, Vincent Moutardier, Agnes Schonbrunn, Corinne Gerard, Anne Barlier, and Alexandru Saveanu

Gastroenteropancreatic neuroendocrine tumors (GEP–NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1–10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability.

Free access

Adrian F Daly, Philippe A Lysy, Céline Desfilles, Liliya Rostomyan, Amira Mohamed, Jean-Hubert Caberg, Veronique Raverot, Emilie Castermans, Etienne Marbaix, Dominique Maiter, Chloe Brunelle, Giampaolo Trivellin, Constantine A Stratakis, Vincent Bours, Christian Raftopoulos, Veronique Beauloye, Anne Barlier, and Albert Beckers

X-linked acrogigantism (X-LAG) syndrome is a newly described form of inheritable pituitary gigantism that begins in early childhood and is usually associated with markedly elevated GH and prolactin secretion by mixed pituitary adenomas/hyperplasia. Microduplications on chromosome Xq26.3 including the GPR101 gene cause X-LAG syndrome. In individual cases random GHRH levels have been elevated. We performed a series of hormonal profiles in a young female sporadic X-LAG syndrome patient and subsequently undertook in vitro studies of primary pituitary tumor culture following neurosurgical resection. The patient demonstrated consistently elevated circulating GHRH levels throughout preoperative testing, which was accompanied by marked GH and prolactin hypersecretion; GH demonstrated a paradoxical increase following TRH administration. In vitro, the pituitary cells showed baseline GH and prolactin release that was further stimulated by GHRH administration. Co-incubation with GHRH and the GHRH receptor antagonist, acetyl-(d-Arg2)-GHRH (1-29) amide, blocked the GHRH-induced GH stimulation; the GHRH receptor antagonist alone significantly reduced GH release. Pasireotide, but not octreotide, inhibited GH secretion. A ghrelin receptor agonist and an inverse agonist led to modest, statistically significant increases and decreases in GH secretion, respectively. GHRH hypersecretion can accompany the pituitary abnormalities seen in X-LAG syndrome. These data suggest that the pathology of X-LAG syndrome may include hypothalamic dysregulation of GHRH secretion, which is in keeping with localization of GPR101 in the hypothalamus. Therapeutic blockade of GHRH secretion could represent a way to target the marked hormonal hypersecretion and overgrowth that characterizes X-LAG syndrome.

Restricted access

Corinne Gérard, Marie Lagarde, Flora Poizat, Sandrine Oziel-Taieb, Vincent Garcia, Catherine Roche, Patricia Niccoli, Anne Barlier, and David Romano

Although there is evidence of a significant rise of neuroendocrine neoplasms (NENs) incidence, current treatments are largely insufficient due to somewhat poor knowledge of these tumours. Despite showing differentiated features, NENs exhibit therapeutic resistance to most common treatments, similar to other cancers in many instances. Molecular mechanisms responsible for this resistance phenomenon are badly understood. We aimed at identifying signalling partners responsible of acquired resistance to treatments in order to develop novel therapeutic strategies. We engineered QGP-1 cells resistant to current leading treatments, the chemotherapeutic agent oxaliplatin and the mTor inhibitor everolimus. Cells were chronically exposed to the drugs and assessed for acquired resistance by viability assay. We used microarray-based kinomics to obtain highthroughput kinase activity profiles from drug sensitive vs resistant cells and identified ‘hit’ kinases hyperactivated in drug-resistant cells, including kinases from FGFR family, cyclin-dependant kinases and PKCs in oxaliplatin-resistant (R-Ox) QGP-1 cells. We then validated these ‘hit’ kinases and observed that ERK signalling is specifically enhanced in QGP-1 R-Ox cells. Finally, we assessed drug-resistant cells sensitivity to pharmacological inhibition of ‘hit’ kinases or their signalling partners. We found that FGFR inhibition markedly decreased ERK signalling and cell viability in QGP-1 R-Ox cells. These results suggest that the FGFR/ERK axis is hyperactivated in response to oxaliplatin-based chemotherapeutic strategy. Thus, this sensitive approach, based on the study of kinome activity, allows identifying potential candidates involved in drug resistance in NENs and may be used to broadly investigate markers of NENs therapeutic response.

Free access

Charlotte Veyrat-Durebex, Nathalie Bouzamondo, Morgane Le Mao, Juan Manuel Chao de la Barca, Céline Bris, Xavier Dieu, Gilles Simard, Cédric Gadras, Lydie Tessier, Delphine Drui, Françoise Borson-Chazot, Anne Barlier, Pascal Reynier, and Delphine Prunier-Mirebeau

Thirty percent of medullary thyroid carcinomas (MTCs) are related to dominant germline pathogenic variants in the RET proto-oncogene. According to their aggressiveness, these pathogenic variants are classified in three risk levels: ‘moderate’, ‘high’ and ‘highest’. The present study compares the metabolomics profiles of five pathogenic variants, whether already classified or not. We have generated six stable murine fibroblast cell lines (NIH3T3) expressing the WT allele or variants of the human RET gene, with different levels of pathogenicity, including the M918V variant that is yet to be accurately classified. We carried out a targeted metabolomics study of the cell extracts with a QTRAP mass spectrometer, using the Biocrates Absolute IDQ p180 kit, which allows the quantification of 188 endogenous molecules. The data were then subjected to multivariate statistical analysis. One hundred seventy three metabolites were accurately measured. The metabolic profiles of the cells expressing the RET variants were found to be correlated with their oncogenic risk. In addition, the statistical model we constructed for predicting the oncogenic risk attributed a moderate risk to the M918V variant. Our results indicate that metabolomics may be useful for characterizing the pathogenicity of the RET gene variants and their levels of aggressiveness.

Open access

Helene Myrtue Nielsen, Alexandre How-Kit, Carole Guerin, Frederic Castinetti, Hans Kristian Moen Vollan, Catherine De Micco, Antoine Daunay, David Taieb, Peter Van Loo, Celine Besse, Vessela N Kristensen, Lise Lotte Hansen, Anne Barlier, Frederic Sebag, and Jörg Tost

Overexpression of insulin growth factor 2 (IGF2) is a hallmark of adrenocortical carcinomas and pheochromocytomas. Previous studies investigating the IGF2/H19 locus have mainly focused on a single molecular level such as genomic alterations or altered DNA methylation levels and the causal changes underlying IGF2 overexpression are still not fully established. In the current study, we analyzed 62 tumors of the adrenal gland from patients with Conn's adenoma (CA, n=12), pheochromocytomas (PCC, n=10), adrenocortical benign tumors (ACBT, n=20), and adrenocortical carcinomas (ACC, n=20). Gene expression, somatic copy number variation of chr11p15.5, and DNA methylation status of three differential methylated regions of the IGF2/H19 locus including the H19 imprinting control region were integratively analyzed. IGF2 overexpression was found in 85% of the ACCs and 100% of the PCCs compared to 23% observed in CAs and ACBTs. Copy number aberrations of chr11p15.5 were abundant in both PCCs and ACCs but while PCCs retained a diploid state, ACCs were frequently tetraploid (7/19). Loss of either a single allele or loss of two alleles of the same parental origin in tetraploid samples resulted in a uniparental disomy-like genotype. These copy number changes correlated with hypermethylation of the H19 ICR suggesting that the lost alleles were the unmethylated maternal alleles. Our data provide conclusive evidence that loss of the maternal allele correlates with IGF2 overexpression in adrenal tumors and that hypermethylation of the H19 ICR is a consequence thereof.

Free access

Marie-Lise Jaffrain-Rea, Sandra Rotondi, Annarita Turchi, Gianluca Occhi, Anne Barlier, Erika Peverelli, Lilya Rostomyan, Céline Defilles, Mariolina Angelini, Maria-Antonietta Oliva, Filippo Ceccato, Orlando Maiorani, Adrian F Daly, Vincenzo Esposito, Francesca Buttarelli, Dominique Figarella-Branger, Felice Giangaspero, Anna Spada, Carla Scaroni, Edoardo Alesse, and Albert Beckers

Germline aryl hydrocarbon receptor interacting protein (AIP) gene mutations confer a predisposition to pituitary adenoma (PA), predominantly GH-secreting (GH-PA). As recent data suggest a role for AIP in the pathogenesis of sporadic GH-PA and their response to somatostatin analogues (SSA), the expression of AIP and its partner, aryl hydrocarbon receptor (AHR), was determined by semiquantitative immunohistochemistry scoring in 62 sporadic GH-PA (37 treated with SSA preoperatively). The influence of Gsp status was studied in a subset of tumours (n=39, 14 Gsp +) and six GH-PA were available for primary cultures. AIP and AHR were detected in most cases, with a positive correlation between AIP and cytoplasmic AHR (P=0.012). Low AIP expression was significantly more frequent in untreated vs SSA-treated tumours (44.0 vs 20.5%, P=0.016). AHR expression or localisation did not differ between the two groups. Similarly, in vitro octreotide induced a median twofold increase in AIP expression (range 1.2–13.9, P=0.027) in GH-PA. In SSA-treated tumours, the AIP score was significantly higher in the presence of preoperative IGF1 decrease or tumour shrinkage (P=0.008 and P=0.014 respectively). In untreated tumours, low AIP expression was significantly associated with invasiveness (P=0.028) and suprasellar extension (P=0.019). The only effect of Gsp status was a significantly lower nuclear AHR score in Gsp + vs Gsp tumours (P=0.025), irrespective of SSA. In conclusion, AIP is involved in the aggressiveness of sporadic GH-PA, regardless of Gsp status, and AIP up-regulation in SSA-treated tumours is associated with a better preoperative response, with no clear role for AHR.