Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Anthony J Gill x
Clear All Modify Search
Free access

Elham Barazeghi, Anthony J Gill, Stan Sidhu, Olov Norlén, Roberto Dina, F Fausto Palazzo, Per Hellman, Peter Stålberg and Gunnar Westin

Primary hyperparathyroidism (pHPT) is rarely caused by parathyroid carcinoma (PC, <1–5% of pHPT cases). The TET proteins oxidize the epigenetic mark 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and inactivation by mutation or epigenetic deregulation of TET1 and TET2 play important roles in various cancers. Recently, we found that 5hmC was severely reduced in all of the analyzed PCs and with deranged expression of TET1 for the majority of PCs. Here, we have examined the expression of the TET2 protein in 15 5hmC-negative PCs from patients who had local invasion or metastases. Cell growth and cell migratory roles for TET2 as well as epigenetic deregulated expression were addressed. Immunohistochemistry revealed very low/undetectable expression of TET2 in all PCs and verified for two PCs that were available for western blotting analysis. Knockdown of TET2 in the parathyroid cell line sHPT-1 resulted in increased cell growth and increased cell migration. DNA sequencing of TET2 in PCs revealed two common variants and no obvious inactivating mutations. Quantitative bisulfite pyrosequencing analysis of the TET2 promoter CpG island revealed higher CpG methylation level in the PCs compared to that in normal tissues and treatment of a PC primary cell culture with the DNA methylation inhibitor 5-aza-2′-deoxycytidine caused increased expression of the methylated TET2 gene. Hence, the data suggest that deregulated expression of TET2 by DNA hypermethylation may contribute to the aberrantly low level of 5hmC in PCs and further that TET2 plays a cell growth and cell migratory regulatory role and may constitute a parathyroid tumor suppressor gene.

Free access

Patsy S H Soon, Edward Kim, Cindy K Pon, Anthony J Gill, Katrina Moore, Andrew J Spillane, Diana E Benn and Robert C Baxter

Cancer-associated fibroblasts (CAFs) play a role in tumour initiation and progression, possibly by inducing epithelial-to-mesenchymal transition (EMT), a series of cellular changes that is known to underlie the process of metastasis. The aim of this study was to determine whether CAFs and surrounding normal breast fibroblasts (NBFs) are able to induce EMT markers and functional changes in breast epithelial cancer cells. Matched pairs of CAFs and NBFs were established from fresh human breast cancer specimens and characterised by assessment of CXCL12 levels, α-smooth muscle actin (α-SMA) levels and response to doxorubicin. The fibroblasts were then co-cultured with MCF7 cells. Vimentin and E-cadherin expressions were determined in co-cultured MCF7 cells by immunofluorescence and confocal microscopy as well as by western blotting and quantitative PCR. Co-cultured MCF7 cells were also assessed functionally by invasion assay. CAFs secreted higher levels of CXCL12 and expressed higher levels of α-SMA compared with NBFs. CAFs were also less sensitive to doxorubicin as evidenced by less H2AX phosphorylation and reduced apoptosis on flow cytometric analysis of Annexin V compared with NBFs. When co-cultured with MCF7 cells, there was greater vimentin and less E-cadherin expression as well as greater invasiveness in MCF7 cells co-cultured with CAFs compared with those co-cultured with NBFs. CAFs have the ability to induce a greater degree of EMT in MCF7 cell lines, indicating that CAFs contribute to a more malignant breast cancer phenotype and their role in influencing therapy resistance should therefore be considered when treating breast cancer.

Free access

Michael A Hahn, Viive M Howell, Anthony J Gill, Adele Clarkson, Graham Weaire-Buchanan, Bruce G Robinson, Leigh Delbridge, Oliver Gimm, Wolfgang D Schmitt, Bin T Teh and Deborah J Marsh

The tumor suppressor HRPT2/CDC73 is mutated in constitutive DNA from patients with the familial disorder hyperparathyroidism–jaw tumor syndrome and in ∼70% of all parathyroid carcinomas. In a number of HRPT2 mutant tumors however, expression of the encoded protein parafibromin is lost in the absence of a clear second event such as HRPT2 allelic loss or the presence of a second mutation in this tumor suppressor gene. We sought to determine whether hypermethylation of a 713 bp CpG island extending 648 nucleotides upstream of the HRPT2 translational start site and 65 nucleotides into exon 1 might be a mechanism contributing to the loss of expression of parafibromin in parathyroid tumors. Furthermore, we asked whether mutations might be present in the 5′-untranslated region (5′-UTR) of HRPT2. We investigated a pool of tissue from 3 normal parathyroid glands, as well as 15 individual parathyroid tumor samples including 6 tumors with known HRPT2 mutations, for hypermethylation of the HRPT2 CpG island. Methylation was not identified in any specimens despite complete loss of parafibromin expression in two parathyroid carcinomas with a single detectable HRPT2 mutation and retention of the wild-type HRPT2 allele. Furthermore, no mutations of a likely pathogenic nature were identified in the 5′-UTR of HRPT2. These data strongly suggest that alternative mechanisms such as mutation in HRPT2 intronic regions, additional epigenetic regulation such as histone modifications, or other regulatory inactivation mechanisms such as targeting by microRNAs may play a role in the loss of parafibromin expression.

Free access

Goswin Y Meyer-Rochow, Nicole E Jackson, John V Conaglen, Denis E Whittle, Muthusamy Kunnimalaiyaan, Herbert Chen, Gunnar Westin, Johanna Sandgren, Peter Stålberg, Elham Khanafshar, Daniel Shibru, Quan-Yang Duh, Orlo H Clark, Electron Kebebew, Anthony J Gill, Rory Clifton-Bligh, Bruce G Robinson, Diana E Benn and Stan B Sidhu

MicroRNAs (miRNAs) are small RNAs (∼22 bp) that post-transcriptionally regulate protein expression and are found to be differentially expressed in a number of human cancers. There is increasing evidence to suggest that miRNAs could be useful in cancer diagnosis, prognosis, and therapy. We performed miRNA microarray expression profiling on a cohort of 12 benign and 12 malignant pheochromocytomas and identified a number of differentially expressed miRNAs. These results were validated in a separate cohort of ten benign and ten malignant samples using real-time quantitative RT-PCR; benign samples had a minimum follow-up of at least 2 years. It was found that IGF2 as well as its intronic miR-483-5p was over-expressed, while miR-15a and miR-16 were under-expressed in malignant tumours compared with benign tumours. These miRNAs were found to be diagnostic and prognostic markers for malignant pheochromocytoma. The functional role of miR-15a and miR-16 was investigated in vitro in the rat PC12 pheochromocytoma cell line, and these miRNAs were found to regulate cell proliferation via their effect on cyclin D1 and apoptosis. These data indicate that miRNAs play a pivotal role in the biology of malignant pheochromocytoma, and represent an important class of diagnostic and prognostic biomarkers and therapeutic targets warranting further investigation.

Free access

Trisha Dwight, Aidan Flynn, Kaushalya Amarasinghe, Diana E Benn, Richard Lupat, Jason Li, Daniel L Cameron, Annette Hogg, Shiva Balachander, Ida L M Candiloro, Stephen Q Wong, Bruce G Robinson, Anthony T Papenfuss, Anthony J Gill, Alexander Dobrovic, Rodney J Hicks, Roderick J Clifton-Bligh and Richard W Tothill

Pheochromocytomas (PC) and paragangliomas (PGL) are endocrine tumors for which the genetic and clinicopathological features of metastatic progression remain incompletely understood. As a result, the risk of metastasis from a primary tumor cannot be predicted. Early diagnosis of individuals at high risk of developing metastases is clinically important and the identification of new biomarkers that are predictive of metastatic potential is of high value. Activation of TERT has been associated with a number of malignant tumors, including PC/PGL. However, the mechanism of TERT activation in the majority of PC/PGL remains unclear. As TERT promoter mutations occur rarely in PC/PGL, we hypothesized that other mechanisms – such as structural variations – may underlie TERT activation in these tumors. From 35 PC and four PGL, we identified three primary PCs that developed metastases with elevated TERT expression, each of which lacked TERT promoter mutations and promoter DNA methylation. Using whole genome sequencing, we identified somatic structural alterations proximal to the TERT locus in two of these tumors. In both tumors, the genomic rearrangements led to the positioning of super-enhancers proximal to the TERT promoter, that are likely responsible for the activation of the normally tightly repressed TERT expression in chromaffin cells