Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Arantza Esnal-Zufiaurre x
Clear All Modify Search
Open access

Douglas A Gibson, Frances Collins, Fiona L Cousins, Arantza Esnal Zufiaurre and Philippa T K Saunders

Endometrial cancer (EC) is the most common gynaecological malignancy. Obesity is a major risk factor for EC and is associated with elevated cholesterol. 27-hydroxycholesterol (27HC) is a cholesterol metabolite that functions as an endogenous agonist for Liver X receptor (LXR) and a selective oestrogen receptor modulator (SERM). Exposure to oestrogenic ligands increases risk of developing EC; however, the impact of 27HC on EC is unknown. Samples of stage 1 EC (n = 126) were collected from postmenopausal women undergoing hysterectomy. Expression of LXRs (NR1H3, LXRα; NR1H2, LXRβ) and enzymes required for the synthesis (CYP27A1) or breakdown (CYP7B1) of 27HC were detected in all grades of EC. Cell lines originating from well-, moderate- and poorly-differentiated ECs (Ishikawa, RL95, MFE 280 respectively) were used to assess the impact of 27HC or the LXR agonist GW3965 on proliferation or expression of a luciferase reporter gene under the control of LXR- or ER-dependent promoters (LXRE, ERE). Incubation with 27HC or GW3965 increased transcription via LXRE in Ishikawa, RL95 and MFE 280 cells (P < 0.01). 27HC selectively activated ER-dependent transcription (P < 0.001) in Ishikawa cells and promoted proliferation of both Ishikawa and RL95 cells (P < 0.001). In MFE 280 cells, 27HC did not alter proliferation but selective targeting of LXR with GW3965 significantly reduced cell proliferation (P < 0.0001). These novel results suggest that 27HC can contribute to risk of EC by promoting proliferation of endometrial cancer epithelial cells and highlight LXR as a potential therapeutic target in the treatment of advanced disease.

Open access

Frances Collins, Nozomi Itani, Arantza Esnal-Zufiaurre, Douglas A Gibson, Carol Fitzgerald and Philippa T K Saunders

Endometrial cancer is a common gynaeological malignancy: life time exposure to oestrogen is a key risk factor. Oestrogen action is mediated by receptors encoded by ESR1 (ERα) and ESR2 (ERβ): ERα plays a key role in regulating endometrial cell proliferation. A truncated splice variant isoform (ERβ5) encoded by ESR2 is highly expressed in cancers. This study explored whether ERβ5 alters oestrogen responsiveness of endometrial epithelial cells. Immunhistochemistry profiling of human endometrial cancer tissue biopsies identified epithelial cells co-expressing ERβ5 and ERα in stage I endometrial adenocarcinomas and post menopausal endometrium. Induced co-expression of ERβ5 in ERαpos endometrial cancer cells (Ishikawa) significantly increased ligand-dependent activation of an ERE-luciferase reporter stimulated by either E2 or the ERα-selective agonist 1,3,5-(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) compared to untransfected cells. Fluorescence recovery after photobleaching (FRAP) analysis of tagged yellow fluorescent protein (YFP)-ERβ5 transfected into Ishikawa cells revealed that incubation with E2 induced a transient reduction in intra-nuclear mobility characterised by punctate protein redistribution which phenocopied the behaviour of ERα following ligand activation with E2. In ERαneg MDA-MD-231 breast cancer cells, there was no E2-dependent change in mobility of YFP-ERβ5 and no activation of the ERE reporter in cells expressing ERβ5. In conclusion, we demonstrate that ERβ5 can act as heterodimeric partner to ERα in Ishikawa cells and increases their sensitivity to E2. We speculate that expression of ERβ5 in endometrial epithelial cells may increase the risk of malignant transformation and suggest that immunostaining for ERβ5 should be included in diagnostic assessment of women with early grade cancers.