Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Avaniyapuram Kannan Murugan x
Clear All Modify Search
Full access

Avaniyapuram Kannan Murugan, Arasambattu Kannan Munirajan and Ali S Alzahrani

Thyroid cancer continues to be the most common malignancy of endocrine glands. The incidence of thyroid cancer has risen significantly over the past 4 decades and has emerged as a major health issue. In recent years, significant progress has been achieved in our understanding of the molecular mechanisms of thyroid carcinogenesis, resulting in significant diagnostic, prognostic and therapeutic implications; yet, it has not reached a satisfactory level. Identifying novel molecular therapeutic targets and molecules for diagnosis and prognosis is expected to advance the overall management of this common malignancy. Long noncoding RNAs (lncRNAs) are implicated in the regulation of various key cellular genes involved in cell differentiation, proliferation, cell cycle, apoptosis, migration and invasion mainly through modulation of gene expression. Recent studies have established that lncRNAs are deregulated in thyroid cancer. In this review, we discuss extensively the tumor-suppressive (for example, LINC00271, MEG3, NAMA, PTCSC1/2/3, etc.) and oncogenic (for example, ANRIL, FAL1, H19, PVT1, etc.) roles of various lncRNAs and their possible disease associations implicated in thyroid carcinogenesis. We briefly summarize the strategies and mechanisms of lncRNA-targeting agents. We also describe the potential role of lncRNAs as prospective novel therapeutic targets, and diagnostic and prognostic markers in thyroid cancer.

Open access

Zongjing Zhang, Dingxie Liu, Avaniyapuram Kannan Murugan, Zhimin Liu and Mingzhao Xing

The BRAF V600E mutation causes impaired expression of sodium iodide symporter (NIS) and radioiodine refractoriness of thyroid cancer, but the underlying mechanism remains undefined. In this study, we hypothesized that histone deacetylation at the NIS (SLC5A5) promoter was the mechanism. Using the chromatin immunoprecipitation approach, we examined histone acetylation status on the lysine residues H3K9/14, H3K18, total H4, and H4K16 at the NIS promoter under the influence of BRAF V600E. We found that expression of stably or transiently transfected BRAF V600E inhibited NIS expression while the deacetylase inhibitor SAHA stimulated NIS expression in PCCL3 rat thyroid cells. Although BRAF V600E enhanced global histone acetylation, it caused histone deacetylation at the NIS promoter while SAHA caused acetylation in the cells. In human thyroid cancer BCPAP cells harboring homozygous BRAF V600E mutation, BRAF V600E inhibitor, PLX4032, and MEK inhibitor, AZD6244, increased histone acetylation of the NIS promoter, suggesting that BRAF V600E normally maintained histone in a deacetylated state at the NIS promoter. The regions most commonly affected with deacetylation by BRAF V600E were the transcriptionally active areas upstream of the translation start that contained important transcription factor binding sites, including nucleotides −297/−107 in the rat NIS promoter and −692/−370 in the human NIS promoter. Our findings not only reveal an epigenetic mechanism for BRAF V600E-promoted NIS silencing involving histone deacetylation at critical regulatory regions of the NIS promoter but also provide further support for our previously proposed combination therapy targeting major signaling pathways and histone deacetylase to restore thyroid gene expression for radioiodine treatment of thyroid cancer.

Full access

Ebtesam Qasem, Avaniyapuram Kannan Murugan, Hindi Al-Hindi, Mingzhao Xing, Mai Almohanna, Meshael Alswailem and Ali S Alzahrani

Telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have recently been described in follicular cell-derived thyroid cancer (TC) in patients from North America and Europe. In this study, we explored whether these findings could be replicated in patients from a different ethnic group. We screened 17 benign thyroid adenomas and 265 TC samples from patients in the Middle East for these mutations by PCR and direct sequencing using DNA isolated from paraffin-embedded tumor tissues. None of the 17 benign adenomas harbored TERT promoter mutations. Of 265 TC, 34 (12.8%) harbored TERT promoter mutations, including 10/153 (6.5%) conventional papillary TC (CPTC), 8/57 (14.0%) follicular variant PTC, 9/30 (30%) tall cell variant PTC, 1/3 (30%) Hurthle cell thyroid cancer (HTC), 1/5 (20%) follicular TC, and 5/13 (38.5%) poorly differentiated TC. C250T mutation was present in only 6/265 (2.3%) cases, while C228T mutation was present in a total of 28/265 (10.6%) cases. These two mutations were mutually exclusive. TERT promoter mutations were significantly more common in older (≥45 years) than younger patients and were associated with larger tumour size, vascular invasion, higher TNM stage (stage III and IV), BRAF V600E mutation and persistent/recurrent disease at 6–12 months after initial treatment and at the last follow up. These associations were stronger in non-CPTC. Thus, this study on a large cohort of TC patients from Middle East demonstrates that TERT promoter mutations are relatively common, especially in the non-CPTC, and are associated with more aggressive histopathological features, BRAF V600E mutation, and disease persistence/recurrence than the WT TERT.

Full access

Xiaoli Liu, Justin Bishop, Yuan Shan, Sara Pai, Dingxie Liu, Avaniyapuram Kannan Murugan, Hui Sun, Adel K El-Naggar and Mingzhao Xing

Mutations 1 295 228 C>T and 1 295 250 C>T (termed C228T and C250T respectively), corresponding to −124 C>T and −146 C>T from the translation start site in the promoter of the telomerase reverse transcriptase (TERT) gene, have recently been reported in human cancers, but not in thyroid cancers yet. We explored these mutations in thyroid cancers by genomic sequencing of a large number of primary tumor samples. We found the C228T mutation in 0 of 85 (0.0%) benign thyroid tumors, 30 of 257 (11.7%) papillary thyroid cancers (PTC), 9 of 79 (11.4%) follicular thyroid cancers (FTC), 3 of 8 (37.5%) poorly differentiated thyroid cancers (PDTC), 23 of 54 (42.6%) anaplastic thyroid cancers (ATC), and 8 of 12 (66.7%) thyroid cancer cell lines. The C250T mutation was uncommon, but mutually exclusive with the C228T mutation, and the two mutations were collectively found in 11 of 79 (13.9%) FTC, 25 of 54 (46.3%) ATC, and 11 of 12 (91.7%) thyroid cancer cell lines. Among PTC variants, the C228T mutation was found in 4 of 13 (30.8%) tall-cell PTC (TCPTC), 23 of 187 (12.3%) conventional PTC, and 2 of 56 (3.6%) follicular variant PTC samples. No TERT mutation was found in 16 medullary thyroid cancer samples. The C228T mutation was associated with the BRAF V600E mutation in PTC, being present in 19 of 104 (18.3%) BRAF mutation-positive PTC vs 11 of 153 (7.2%) the BRAF mutation-negative PTC samples (P=0.0094). Conversely, BRAF mutation was found in 19 of 30 (63.3%) C228T mutation-positive PTC vs 85 of 227 (37.4%) C228T mutation-negative PTC samples (P=0.0094). We thus for the first time, to our knowledge, demonstrate TERT promoter mutations in thyroid cancers, that are particularly prevalent in the aggressive thyroid cancers TCPTC, PDTC, ATC and BRAF mutation-positive PTC, revealing a novel genetic background for thyroid cancers.