Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Christopher J Yates x
  • Refine by access: All content x
Clear All Modify Search
Kreepa G Kooblall OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Kreepa G Kooblall in
Google Scholar
PubMed
Close
,
Victoria J Stokes OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Victoria J Stokes in
Google Scholar
PubMed
Close
,
Omair A Shariq OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Omair A Shariq in
Google Scholar
PubMed
Close
,
Katherine A English OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Katherine A English in
Google Scholar
PubMed
Close
,
Mark Stevenson OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Mark Stevenson in
Google Scholar
PubMed
Close
,
John Broxholme Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK

Search for other papers by John Broxholme in
Google Scholar
PubMed
Close
,
Benjamin Wright Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK

Search for other papers by Benjamin Wright in
Google Scholar
PubMed
Close
,
Helen E Lockstone Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK

Search for other papers by Helen E Lockstone in
Google Scholar
PubMed
Close
,
David Buck Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK

Search for other papers by David Buck in
Google Scholar
PubMed
Close
,
Simona Grozinsky-Glasberg Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology & Metabolism Department, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Israel

Search for other papers by Simona Grozinsky-Glasberg in
Google Scholar
PubMed
Close
,
Christopher J Yates OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Christopher J Yates in
Google Scholar
PubMed
Close
,
Rajesh V Thakker OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK

Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
Close
, and
Kate E Lines OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Kate E Lines in
Google Scholar
PubMed
Close

Multiple endocrine neoplasia type 1 (MEN1), caused by mutations in the MEN1 gene encoding menin, is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic neuroendocrine tumours (NETs). Development of these tumours is associated with wide variations in their severity, order and ages (from <5 to >80 years), requiring life-long screening. To improve tumour surveillance and quality of life, better circulating biomarkers, particularly for pancreatic NETs that are associated with higher mortality, are required. We, therefore, examined the expression of circulating miRNA in the serum of MEN1 patients. Initial profiling analysis followed by qRT-PCR validation studies identified miR-3156-5p to be significantly downregulated (−1.3 to 5.8-fold, P < 0.05–0.0005) in nine MEN1 patients, compared to matched unaffected relatives. MEN1 knock-down experiments in BON-1 human pancreatic NET cells resulted in reduced MEN1 (49%, P < 0.05), menin (54%, P < 0.05) and miR-3156-5p expression (20%, P < 0.005), compared to control-treated cells, suggesting that miR-3156-5p downregulation is a consequence of loss of MEN1 expression. In silico analysis identified mortality factor 4-like 2 (MOR4FL2) as a potential target of miR-3156-5p, and in vitro functional studies in BON-1 cells transfected with either miR-3156-5p mimic or inhibitors showed that the miR-3156-5p mimic significantly reduced MORF4L2 protein expression (46%, P < 0.005), while miR-3156-5p inhibitor significantly increased MORF4L2 expression (1.5-fold, P < 0.05), compared to control-treated cells, thereby confirming that miR-3156-5p regulates MORF4L2 expression. Thus, the inverse relationship between miR-3156-5p and MORF4L2 expression represents a potential serum biomarker that could facilitate the detection of NET occurrence in MEN1 patients.

Open access