Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Dik J Kwekkeboom x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Jaap J M Teunissen, Dik J Kwekkeboom, R Valkema, and Eric P Krenning

Nuclear medicine plays a pivotal role in the imaging and treatment of neuroendocrine tumours (NETs). Somatostatin receptor scintigraphy (SRS) with [111In-DTPA0]octreotide has proven its role in the diagnosis and staging of gastroenteropancreatic NETs (GEP-NETs). New techniques in somatostatin receptor imaging include the use of different radiolabelled somatostatin analogues with higher affinity and different affinity profiles to the somatostatin receptor subtypes. Most of these analogues can also be labelled with positron-emitting radionuclides that are being used in positron emission tomography imaging. The latter imaging modality, especially in the combination with computed tomography, is of interest because of encouraging results in terms of improved imaging quality and detection capabilities. Considerable advances have been made in the imaging of NETs, but to find the ideal imaging method with increased sensitivity and better topographic localisation of the primary and metastatic disease remains the ultimate goal of research. This review provides an overview of the currently used imaging modalities and ongoing developments in the imaging of NETs, with the emphasis on nuclear medicine and puts them in perspective of clinical practice. The advantage of SRS over other imaging modalities in GEP-NETs is that it can be used to select patients with sufficient uptake for treatment with radiolabelled somatostatin analogues. Peptide receptor radionuclide therapy (PRRT) is a promising new tool in the management of patients with inoperable or metastasised NETs as it can induce symptomatic improvement with all Indium-111, Yttrium-90 or Lutetium-177-labelled somatostatin analogues. The results that were obtained with [90Y-DOTA0,Tyr3]octreotide and [177Lu-DOTA0,Tyr3]octreotate are even more encouraging in terms of objective tumour responses with tumour regression and documented prolonged time to progression. In the largest group of patients receiving PRRT, treated with [177Lu-DOTA0,Tyr3]octreotate, a survival benefit of several years compared with historical controls has been reported.

Free access

Kimberly Kamp, Brenda Gumz, Richard A Feelders, Dik J Kwekkeboom, Gregory Kaltsas, Frederico P Costa, and Wouter W de Herder

Although 177Lu-octreotate is an effective treatment for patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs), some patients will fail or develop disease progression necessitating further treatment. We examined whether the safety and efficacy of everolimus after prior treatment with 177Lu-octreotate is different from the published safety profile of everolimus in GEP-NETs. In this multicenter study, 24 GEP-NET patients were included. Adverse events were assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. Tumor response was measured according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.0. Major clinical adverse events (grade 3 or 4) during treatment with everolimus were hyperglycemia (20.8%), fatigue (8.3%), thrombocytopenia (8.3%), and elevated alanine transaminase levels (8.3%). By radiological review, there were four partial responses (16.7%), five patients (62.5%) with stable disease, and three patients (12.5%) with progressive disease. For two patients (8.3%), no data on tumor response were available. Median progression-free survival (PFS) was 13.1 months (95% CI, 11.5–21.2). Median PFS of the current study was longer when compared with the RADIANT-3 trial (13.1 vs 11.4 months) and shorter when compared with the RADIANT-1 trial (13.1 vs 16.7 months). In conclusion, the safety profile of everolimus is not influenced by previous treatment with peptide receptor radiotherapy.

Free access

Tessa Brabander, Wouter A van der Zwan, Jaap J M Teunissen, Boen L R Kam, Wouter W de Herder, Richard A Feelders, Eric P Krenning, and Dik J Kwekkeboom

Peptide receptor radionuclide therapy (PRRT) with [177Lu-DOTA0,Tyr3]octreotate (177Lu-DOTATATE) is a treatment with good results in patients with metastatic gastroenteropancreatic neuroendocrine tumours (GEPNETs). However, there are some pitfalls that should be taken into consideration when evaluating the treatment response after PRRT. 354 Dutch patients with GEPNETs who were treated with 177Lu-DOTATATE between March 2000 and December 2011 were retrospectively selected. Liver function parameters and chromogranin A were measured before each therapy and in follow-up. Anatomical imaging was performed before therapy and in follow-up. An increase in aminotransferases by ≥20% compared to baseline was observed in 83 of 351 patients (24%). In patients with an objective response (OR) and stable disease (SD) this increase was observed in 71/297 (24%) and in patients with progressive disease (PD) it was observed in 12/54 patients (22%). An increase in chromogranin A by ≥20% compared to baseline was observed in 76 patients (29%). This was present in 34% of patients who eventually had PD and 27% of patients who had OR/SD. In 70% of patients this tumour marker returned to baseline levels after therapy. An increase in liver enzymes and chromogranin A is not uncommon after PRRT. In the vast majority of patients this will resolve in follow-up. Clinicians should be aware that these changes may occur due to radiation-induced inflammation or disease progression and that repeated measurements over time are necessary to differentiate between the two.

Free access

Dik J Kwekkeboom, Boen L Kam, Martijn van Essen, Jaap J M Teunissen, Casper H J van Eijck, Roelf Valkema, Marion de Jong, Wouter W de Herder, and Eric P Krenning

Somatostatin receptor imaging (SRI) with [111In-DTPA0]octreotide has proven its role in the diagnosis and staging of gastroenteropancreatic neuroendocrine tumors (GEPNETs). Newer radiolabeled somatostatin analogs which can be used in positron emission tomography (PET) imaging, and which have a higher affinity for the somatostatin receptor, especially receptor subtype-2, have been developed. It would be desirable, however, if one radiolabeled analog became the new standard for PET imaging, because the current application of a multitude of analogs implies a fragmented knowledge on the interpretation of the images that are obtained in clinical practice. In our view, the most likely candidates for such a universal PET tracer for SRI are [68Ga-DOTA0,Tyr3]octreotate or [68Ga-DOTA0,Tyr3]octreotide. Treatment with radiolabeled somatostatin analogs is a promising new tool in the management of patients with inoperable or metastasized neuroendocrine tumors. Symptomatic improvement may occur with all 111In-, 90Y-, or 177Lu-labeled somatostatin analogs that have been used for peptide receptor radionuclide therapy (PRRT). The results that were obtained with [90Y-DOTA0,Tyr3]octreotide and [177Lu-DOTA0,Tyr3]octreotate are very encouraging in terms of tumor regression. Also, if kidney protective agents are used, the side effects of this therapy are few and mild, and the median duration of the therapy response for these radiopharmaceuticals is 30 and 40 months respectively. The patients' self-assessed quality of life increases significantly after treatment with [177Lu-DOTA0,Tyr3]octreotate. Lastly, compared to historical controls, there is a benefit in overall survival of several years from the time of diagnosis in patients treated with [177Lu-DOTA0,Tyr3]octreotate. These data compare favorably with the limited number of alternative treatment approaches. If more widespread use of PRRT can be guaranteed, such therapy may well become the therapy of first choice in patients with metastasized or inoperable GEPNETs.