Search Results

You are looking at 1 - 3 of 3 items for

  • Author: E Lim x
Clear All Modify Search
Free access

Elgene Lim, Gerard Tarulli, Neil Portman, Theresa E Hickey, Wayne D Tilley and Carlo Palmieri

The estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) that is expressed in approximately 75% of breast cancers. Therapies that modulate ER action have substantially improved the survival of patients with ER-positive breast cancer, but resistance to treatment still remains a major clinical problem. Treating resistant breast cancer requires co-targeting of ER and alternate signalling pathways that contribute to resistance to improve the efficacy and benefit of currently available treatments. Emerging data have shown that other SSRs may regulate the sites at which ER binds to DNA in ways that can powerfully suppress the oncogenic activity of ER in breast cancer. This includes the progesterone receptor (PR) that was recently shown to reprogram the ER DNA binding landscape towards genes associated with a favourable outcome. Another attractive candidate is the androgen receptor (AR), which is expressed in the majority of breast cancers and inhibits growth of the normal breast and ER-positive tumours when activated by ligand. These findings have led to the initiation of breast cancer clinical trials evaluating therapies that selectively harness the ability of SSRs to ‘push’ ER towards anti-tumorigenic activity. Our review will focus on the established and emerging clinical evidence for activating PR or AR in ER-positive breast cancer to inhibit the tumour growth-promoting functions of ER.

Restricted access

H H Milioli, S Alexandrou, E Lim and C E Caldon

Cyclin E1 is one the most promising biomarkers in estrogen receptor positive (ER+) breast cancer for response to the new standard of care drug class, CDK4/6 inhibitors. Because of its strong predictive value, cyclin E1 expression may be used in the future to triage patients into potential responders and non-responders. Importantly, cyclin E1 is highly related to cyclin E2, and both cyclin E1 and cyclin E2 are estrogen target genes that can facilitate anti-estrogen resistance and can be highly expressed in breast cancer. However cyclin E1 and E2 are often expressed in different subsets of patients. This raises questions about whether the expression of cyclin E1 and cyclin E2 have different biological drivers, if high expressing subsets represent different clinical subtypes, and how to effectively develop a biomarker for E-cyclin expression. Finally, several pan-CDK inhibitors that target cyclin E-CDK2 activity have reached Phase II clinical trials. In this review, we outline the data identifying that different cohorts of patients have high expression of cyclins E1 and E2 in ER+ cancer and address the implications for biomarker and therapeutic development.

Free access

KeeMing Chia, Heloisa Milioli, Neil Portman, Geraldine Laven-Law, Rhiannon Coulson, Aliza Yong, Davendra Segara, Andrew Parker, Catherine E Caldon, Niantao Deng, Alexander Swarbrick, Wayne D Tilley, Theresa E Hickey and Elgene Lim

The role of androgen receptor (AR) in endocrine-resistant breast cancer is controversial and clinical trials targeting AR with an AR antagonist (e.g., enzalutamide) have been initiated. Here, we investigated the consequence of AR antagonism using in vitro and in vivo models of endocrine resistance. AR antagonism in MCF7-derived tamoxifen-resistant (TamR) and long-term estrogen-deprived breast cancer cell lines were achieved using siRNA-mediated knockdown or pharmacological inhibition with enzalutamide. The efficacy of enzalutamide was further assessed in vivo in an estrogen-independent endocrine-resistant patient-derived xenograft (PDX) model. Knockdown of AR inhibited the growth of the endocrine-resistant cell line models. Microarray gene expression profiling of the TamR cells following AR knockdown revealed perturbations in proliferative signaling pathways upregulated in endocrine resistance. AR loss also increased some canonical ER signaling events and restored sensitivity of TamR cells to tamoxifen. In contrast, enzalutamide did not recapitulate the effect of AR knockdown in vitro, even though it inhibited canonical AR signaling, which suggests that it is the non-canonical AR activity that facilitated endocrine resistance. Enzalutamide had demonstrable efficacy in inhibiting AR activity in vivo but did not affect the growth of the endocrine-resistant PDX model. Our findings implicate non-canonical AR activity in facilitating an endocrine-resistant phenotype in breast cancer. Unlike canonical AR signaling which is inhibited by enzalutamide, non-canonical AR activity is not effectively antagonized by enzalutamide, and this has important implications in the design of future AR-targeted clinical trials in endocrine-resistant breast cancer.