Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Elena Rapizzi x
  • All content x
Clear All Modify Search
Free access

Massimo Mannelli, Elena Rapizzi, Rossella Fucci, Letizia Canu, Tonino Ercolino, Michaela Luconi, and William F Young Jr

The discovery of SDHD as a pheochromocytoma/paraganglioma susceptibility gene was the prismatic event that led to all of the subsequent work highlighting the key roles played by mitochondria in the pathogenesis of these tumors and other solid cancers. Alterations in the function of tricarboxylic acid cycle enzymes can cause accumulation of intermediate substrates and subsequent changes in cell metabolism, activation of the angiogenic pathway, increased reactive oxygen species production, DNA hypermethylation, and modification of the tumor microenvironment favoring tumor growth and aggressiveness. The elucidation of these tumorigenic mechanisms should lead to novel therapeutic targets for the treatment of the most aggressive forms of pheochromocytoma/paraganglioma.

Free access

Elena Rapizzi, Rossella Fucci, Elisa Giannoni, Letizia Canu, Susan Richter, Paolo Cirri, and Massimo Mannelli

In solid tumors, neoplastic cells grow in contact with the so-called tumor microenvironment. The interaction between tumor cells and the microenvironment causes reciprocal metabolic reprogramming and favorable conditions for tumor growth and metastatic spread. To obtain an experimental model resembling the in vivo conditions of the succinate dehydrogenase B subunit (SDHB)-mutated paragangliomas (PGLs), we evaluated the effects of SDHB silencing on metabolism and proliferation in the human neuroblastoma cell line (SK-N-AS), cultured alone or in association with human fibroblasts. Silencing caused a 70% decrease in protein expression, an almost complete loss of the complex specific enzymatic activity, and a significant increase in HIF1α and HIF2α expression; it thus resembled the in vivo tumor cell phenotype. When compared with WT SK-N-AS cells, SDHB-silenced cells showed an altered metabolism characterized by an unexpected significant decrease in glucose uptake and an increase in lactate uptake. Moreover, silenced cells exhibited a significant increase in cell proliferation and metalloproteinase activity. When co-cultured with human fibroblasts, control cells displayed a significant decrease in glucose uptake and a significant increase in cell proliferation as compared with their mono-cultured counterparts. These effects were even more evident in co-cultured silenced cells, with a 70% decrease in glucose uptake and a 92% increase in cell proliferation as compared to their mono-cultured counterparts. The present data indicate for the first time, to our knowledge, that SDHB impairment causes metabolic and functional derangement of neural-crest-derived tumor cells and that the microenvironment, here represented by fibroblasts, strongly affects their tumor metabolism and growth capacity.

Free access

Giada Poli, Daniele Guasti, Elena Rapizzi, Rossella Fucci, Letizia Canu, Alessandra Bandinelli, Nicoletta Cini, Daniele Bani, Massimo Mannelli, and Michaela Luconi

At present, mitotane (MTT) represents the first-line pharmacological approach for the treatment of advanced adrenocortical carcinoma (ACC). Despite clear evidence that the drug can reduce the clinical signs of steroid excess in secreting ACC, the mechanism mediating the possible toxic effect of MTT on tumor cells still remains obscure. This study investigated the intracellular events underlying the toxic effect of MTT by studying qualitative and quantitative alterations in mitochondrial morphology and functions in human adrenocortical cancer cell lines, H295R and SW13. Increasing concentrations of MTT resulted in rapid intracellular accumulation and conversion of the drug. Cytostatic and cytotoxic effects were evident at doses corresponding to the therapeutic window (30–50 μM) through an apoptotic mechanism involving caspase 3/7. Electron microscopic analysis of cell mitochondria displayed MTT-induced dose- and time-dependent alterations in the morphology of the organelle. These alterations were characterized by a marked swelling and a decrease in the number of respiratory cristae, accompanied by a significant depolarization of the mitochondrial membrane potential, finally leading to the disruption of the organelle. A drastic reduction of oxygen consumption was observed due to mitochondrial membrane damage, which was accompanied by a decrease in the levels of VDAC1 integral membrane channel. These findings contribute to better understand the intracellular mechanism of action of MTT in ACC cells, showing that its cytotoxic effect seems to be mainly mediated by an apoptotic process activated by the disruption of mitochondria.

Free access

Vanessa D'Antongiovanni, Serena Martinelli, Susan Richter, Letizia Canu, Daniele Guasti, Tommaso Mello, Paolo Romagnoli, Karel Pacak, Graeme Eisenhofer, Massimo Mannelli, and Elena Rapizzi

Pheochromocytomas (Pheos) and paragangliomas (PGLs) are neuroendocrine tumors. Approximately 30–40% of Pheos/PGLs are due to germline mutations in one of the susceptibility genes, including those encoding the succinate dehydrogenase subunits A-D (SDHA-D). Up to 2/3 of patients affected by SDHB mutated Pheo/PGL develop metastatic disease with no successful cure at present. Here, for the first time, we evaluated the effects of SDHB silencing in a three dimension (3D) culture using spheroids of a mouse Pheo cell line silenced or not (wild type/wt/control) for the SDHB subunit. We investigated the role of the microenvironment on spheroid growth and migration/invasion by co-culturing SDHB-silenced or wt spheroids with primary cancer-activated fibroblasts (CAFs). When spheroids were co-cultured with fibroblasts, SDHB-silenced cells showed a significant increase in matrigel invasion as demonstrated by the computation of the migratory areas (P < 0.001). Moreover, cells detaching from the SDHB-silenced spheroids moved collectively, unlike the cells of wt spheroids that moved individually. Additionally, SDHB-silenced spheroids developed long filamentous formations along which clusters of cells migrated far away from the spheroid, whereas these structures were not present in wt spheroids. We found that lactate, largely secreted by CAFs, plays a specific role in promoting migration only of SDHB-silenced cells. In this study, we demonstrated that SDHB silencing per se increases tumor cell migration/invasion and that microenvironment, as represented by CAFs, plays a pivotal role in enhancing collective migration/invasion in Pheo SDHB-silenced tumor cells, suggesting their role in increasing the tumor metastasizing potential.

Free access

Valentina Piccini, Elena Rapizzi, Alessandra Bacca, Giuseppe Di Trapani, Raffaele Pulli, Valentino Giachè, Benedetta Zampetti, Emanuela Lucci-Cordisco, Letizia Canu, Elisa Corsini, Antongiulio Faggiano, Luca Deiana, Davide Carrara, Valeria Tantardini, Stefano Mariotti, Maria Rosaria Ambrosio, Maria Chiara Zatelli, Gabriele Parenti, Annamaria Colao, Carlo Pratesi, Giampaolo Bernini, Tonino Ercolino, and Massimo Mannelli

Head and neck paragangliomas (HNPGLs) are neural crest-derived tumors. In comparison with paragangliomas located in the abdomen and the chest, which are generally catecholamine secreting (sPGLs) and sympathetic in origin, HNPGLs are, in fact, parasympathetic in origin and are generally nonsecreting. Overall, 79 consecutive patients with HNPGL were examined for mutations in SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, MAX, and TMEM127 genes by PCR/sequencing. According to a detailed family history (FH) and clinical, laboratory (including metanephrines), and instrumental examinations, patients were divided into three groups: a) patients with a positive FH for HNPGL (index cases only), b) patients with a negative FH and multiple HNPGLs (synchronous or metachronous) or HNPGL associated with an sPGL, and c) patients with negative FH and single HNPGL. The ten patients in group a) proved to be SDHD mutation carriers. The 16 patients in group b) proved to be SDHD mutation carriers. Among the 53 patients in group c), ten presented with germ-line mutations (three SDHB, three SDHD, two VHL, and two SDHAF2). An sPGL was found at diagnosis or followed up in five patients (6.3%), all were SDHD mutation carriers. No SDHC, SDHA, MAX, and TMEM127 mutations were found. In SDHD mutation carriers, none of the patients affected by HNPGL associated with sPGL presented missense mutations. In conclusion, a positive FH or the presence of multiple HNPGLs is a strong predictor for germ-line mutations, which are also present in 18.8% of patients carefully classified as sporadic. The most frequently mutated gene so far is SDHD but others, including SDHB, SDHAF2, and VHL, may also be affected.

Open access

Trisha Dwight, Edward Kim, Karine Bastard, Diana E Benn, Graeme Eisenhofer, Susan Richter, Massimo Mannelli, Elena Rapizzi, Aleksander Prejbisz, Mariola Pęczkowska, Karel Pacak, and Roderick Clifton-Bligh

Mosaic or somatic EPAS1 mutations are associated with a range of phenotypes including pheochromocytoma and/or paraganglioma (PPGL), polycythemia and somatostatinoma. The pathogenic potential of germline EPAS1 variants however is not well understood. We report a number of germline EPAS1 variants occurring in patients with PPGL, including a novel variant c.739C>A (p.Arg247Ser); a previously described variant c.1121T>A (p.Phe374Tyr); several rare variants, c.581A>G (p.His194Arg), c.2353C>A (p.Pro785Thr) and c.2365A>G (p.Ile789Val); a common variant c.2296A>C (p.Thr766Pro). We performed detailed functional studies to understand their pathogenic role in PPGL. In transient transfection studies, EPAS1/HIF-2α p.Arg247Ser, p.Phe374Tyr and p.Pro785Thr were all stable in normoxia. In co-immunoprecipitation assays, only the novel variant p.Arg247Ser showed diminished interaction with pVHL. A direct interaction between HIF-2α Arg247 and pVHL was confirmed in structural models. Transactivation was assessed by means of a HRE-containing reporter gene in transiently transfected cells, and significantly higher reporter activity was only observed with EPAS1/HIF-2α p.Phe374Tyr and p.Pro785Thr. In conclusion, three germline EPAS1 variants (c.739C>A (p.Arg247Ser), c.1121T>A (p.Phe374Tyr) and c.2353C>A (p.Pro785Thr)) all have some functional features in common with somatic activating mutations. Our findings suggest that these three germline variants are hypermorphic alleles that may act as modifiers to the expression of PPGLs.

Restricted access

Margo Dona, Selma Waaijers, Susan Richter, Graeme Eisenhofer, Jeroen Korving, Sarah M Kamel, Jeroen Bakkers, Elena Rapizzi, Richard J Rodenburg, Jan Zethof, Marnix Gorissen, Gert Flik, Peter M T Deen, and Henri J L M Timmers

Pheochromocytomas and paragangliomas (PPGLs) caused by mutations in the B-subunit of the succinate dehydrogenase (SDHB) have the highest metastatic rate among PPGLs, and effective systemic therapy is lacking. To unravel underlying pathogenic mechanisms, and to evaluate therapeutic strategies, suitable in vivo models are needed. The available systemic Sdhb knock-out mice cannot model the human PPGL phenotype: heterozygous Sdhb mice lack a disease phenotype, and homozygous Sdhb mice are embryonically lethal. Using CRISPR/cas9 technology, we introduced a protein-truncating germline lesion into the zebrafish sdhb gene. Heterozygous sdhb mutants were viable and displayed no obvious morphological or developmental defects. Homozygous sdhb larvae were viable, but exhibited a decreased lifespan. Morphological analysis revealed incompletely or non-inflated swim bladders in homozygous sdhb mutants at day 6. Although no differences in number and ultrastructure of the mitochondria were observed. Clear defects in energy metabolism and swimming behavior were observed in homozygous sdhb mutant larvae. Functional and metabolomic analyses revealed decreased mitochondrial complex 2 activity and significant succinate accumulation in the homozygous sdhb mutant larvae, mimicking the metabolic effects observed in SDHB-associated PPGLs. This is the first study to present a vertebrate animal model that mimics metabolic effects of SDHB-associated PPGLs. This model will be useful in unraveling pathomechanisms behind SDHB-associated PPGLs. We can now study the metabolic effects of sdhb disruption during different developmental stages and develop screening assays to identify novel therapeutic targets in vivo. Besides oncological syndromes, our model might also be useful for pediatric mitochondrial disease caused by loss of the SDHB gene.