Search Results

You are looking at 1 - 4 of 4 items for

  • Author: F Claessens x
Clear All Modify Search
Full access

S M Powell, V Christiaens, D Voulgaraki, J Waxman, F Claessens and C L Bevan

The androgen receptor (AR) is a member of the nuclear receptor superfamily. These ligand-activated transcription factors usually contain two activation functions, a ligand-independent activation function 1(AF1) in the divergent N-terminal domain and a ligand-dependent AF2 in the more conserved C-terminal ligand-binding domain. To promote transcription from target promoters, DNA-bound nuclear receptors recruit coactivator proteins that promote transcription by modifying histones within nucleosomes, resulting in altered topology of chromatin to allow access of the basal transcriptional machinery, or stabilising the pre-initiation complex. It is well known that most coactivators interact with AF2 of many nuclear receptors via conserved, helical LxxLL motifs (where L is leucine and x is any amino acid). The AF2 of the AR is very weak, but we were able to demonstrate that its intrinsic ligand-dependent activity is potentiated by steroid receptor coactivator-1 (SRC1) and that this region interacts with coactivators via LxxLL motifs. However, a mutant SRC1 coactivator with no functional LxxLL motifs was still able to potentiate AR activity. We found that SRC1 can also be recruited to (and increase activity of) AF1 of the AR via a conserved, glutamine-rich region. Point mutations within this region abolish SRC1 interaction with AF1 and also abolish or severely impair its ability to potentiate AR activity on all promoters tested. Thus the AR interacts with SRC1 via two different regions and the AF1 interaction is functionally the more important, although the contribution of the two interactions varies in a promoter-dependent fashion. SRC1 then potentiates receptor activity via recruitment of CBP/p300, a histone acetyltranferase. This is important in the context of prostate cancer as SRC1 and other coactivators including CBP are coexpressed with AR in the luminal epithelial cells of the prostate, where over 90% of prostate tumours arise. There is a need for effective second-line prostate cancer therapy aimed at blocking the AR pathway when anti-androgen therapy has failed. Since there is growing evidence that nuclear receptor cofactors may be implicated in the progression of hormone-dependent tumours to hormone-independent states, novel targets could include the interaction of AR with coactivator proteins. We suggest that the N-terminal interaction would be a more specific and effective target in the case of prostate cancer than the LxxLL/AF2 interaction.

Full access

S Prekovic, T Van den Broeck, S Linder, M E van Royen, A B Houtsmuller, F Handle, S Joniau, W Zwart and F Claessens

Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.

Full access

Y M H Jonkers, S M H Claessen, A Perren, S Schmid, P Komminoth, A A Verhofstad, L J Hofland, R R de Krijger, P J Slootweg, F C S Ramaekers and E-J M Speel

Endocrine pancreatic tumors (EPTs) comprise a highly heterogeneous group of tumors with different clinical behavior and genetic makeup. Insulinomas represent the predominant syndromic subtype of EPTs. The metastatic potential of insulinomas can frequently not be predicted using histopathological criteria, and also molecular markers indicating malignant progression are unreliable because of the small number of cases per subtype studied so far. For the identification of reliable indicators of metastatic disease, we investigated 62 sporadic insulinomas (44 benign and 18 tumors with metastases) by means of comparative genomic hybridization (CGH). In addition, the role of MEN1 (multiple endocrine neoplasia type 1) gene mutations was determined to assess specific chromosomal alterations associated with dysfunction of this endocrine tumor-related tumor suppressor gene. Only one case with a somatic MEN1 mutation was identified (1527del7bp), indicating that the MEN1 gene plays a minor pathogenic role in sporadic insulinomas. CGH analysis revealed that the total number of aberrations per tumor differs strongly between the benign and the malignant group (4.2 vs 14.1; P<0.0001). Furthermore, chromosome 9q gain was found to be the most frequent aberration in both benign and malignant insulinomas, whereas chromosome 6q losses and 12q, 14q and 17pq gains are strongly associated with metastatic disease. Our study shows that chromosomal instability, as defined by ≥5 gains together with ≥5 losses, or total number of gains and losses ≥8, rather than parameters such as tumor size and proliferation index, is the most powerful indicator for the development of metastatic disease in patients with sporadic insulinoma.

Full access

Y M H Jonkers, S M H Claessen, A Perren, A M Schmitt, L J Hofland, W de Herder, R R de Krijger, A A J Verhofstad, A R Hermus, J A Kummer, B Skogseid, M Volante, A C Voogd, F C S Ramaekers and E J M Speel

The clinical behavior of endocrine pancreatic tumors (EPTs) is difficult to predict in the absence of metastases or invasion to adjacent organs. Several markers have been indicated as potential predictors of metastatic disease, such as tumor size ≥2 cm, Ki67 proliferative index ≥2%, cytokeratin (CK) 19 status, and recently in insulinomas, chromosomal instability (CIN). The goal of this study was to evaluate the value of these markers, and in particular of the CIN, to predict tumor recurrence or progression and tumor-specific death, using a series of 47 insulinomas and 24 non-insulinoma EPTs. From these EPT cases, a genomic profile has been generated and follow-up data have been obtained. The proliferative index has been determined in 68 tumors and a CK19 expression pattern in 50 tumors. Results are statistically analyzed using Kaplan–Meier plots and the log-rank statistic. General CIN, as well as specific chromosomal alterations such as 3p and 6q loss and 12q gain, turned out to be the most powerful indicators for poor tumor-free survival (P≤0.0004) and tumor-specific death (P≤0.0113) in insulinomas. The CIN, chromosome 7q gain, and a proliferative index ≥2% were reliable in predicting a poor tumor-free survival in non-insulinoma EPTs (P≤0.0181, whereas CK19 expression was the most optimal predictor of tumor-specific death in these tumors. In conclusion, DNA copy number status is the most sensitive and efficient marker of adverse clinical outcome in insulinomas and of potential interest in non-insulinoma EPTs. As a consequence, this marker should be considered as a prognosticator to improve clinical diagnosis, most practically as a simple multi-target test.