Search Results

You are looking at 1 - 1 of 1 items for

  • Author: F H van Nederveen x
  • Refine by access: All content x
Clear All Modify Search
P N Span Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine
Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by P N Span in
Google Scholar
PubMed
Close
,
J U Rao Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine
Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by J U Rao in
Google Scholar
PubMed
Close
,
S B J Oude Ophuis Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine
Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by S B J Oude Ophuis in
Google Scholar
PubMed
Close
,
J W M Lenders Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine
Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by J W M Lenders in
Google Scholar
PubMed
Close
,
F C G J Sweep Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by F C G J Sweep in
Google Scholar
PubMed
Close
,
P Wesseling Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by P Wesseling in
Google Scholar
PubMed
Close
,
B Kusters Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by B Kusters in
Google Scholar
PubMed
Close
,
F H van Nederveen Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by F H van Nederveen in
Google Scholar
PubMed
Close
,
R R de Krijger Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by R R de Krijger in
Google Scholar
PubMed
Close
,
A R M M Hermus Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by A R M M Hermus in
Google Scholar
PubMed
Close
, and
H J L M Timmers Department of Laboratory Medicine, Department of Radiation Oncology, Department of Endocrinology, Division of Vascular Medicine, Department of Pathology, Department of Pathology, Department of Internal Medicine III, Department of Internal Medicine

Search for other papers by H J L M Timmers in
Google Scholar
PubMed
Close

Paragangliomas (PGLs) have widely different metastastic potentials. Two different types of PGLs can be defined by expression profiling. Cluster 1 PGLs exhibit VHL and/or succinate dehydrogenase (SDH) mutations and a pseudohypoxic phenotype. RET and neurofibromatosis type 1 (NF1) mutations occur in cluster 2 tumors characterized by deregulation of the RAS/RAF/MAP kinase signaling cascade. Sporadic PGLs can exhibit either profile. During sustained hypoxia, a natural antisense transcript of hypoxia-inducible factor 1 (aHIF) is expressed. The role of aHIF in the metastatic potential of PGL has not yet been investigated. The aim was to test the hypothesis that genotype-specific overexpression of aHIF is associated with an increased metastatic potential. Tumor samples were collected from 87 patients with PGL. Quantitative PCR was performed for aHIF, vascular endothelial growth factor (VEGF), aquaporin 3, cytochrome b561, p57Kip2, slit homolog 3, and SDHC. Expression was related to mutation status, benign versus malignant tumors, and metastasis-free survival. We found that both aHIF and VEGF were overexpressed in cluster 1 PGLs and in metastatic tumors. In contrast, slit homolog 3, p57Kip2, cytochrome b561, and SDHC showed overexpression in non-metastatic tumors, whereas no such difference was observed for aquaporin 3. Patients with higher expression levels of aHIF and VEGF had a significantly decreased metastasis-free survival. Higher expression levels of SDHC are correlated with an increased metastasis-free survival. In conclusion, we not only demonstrate a higher expression of VEGF in cluster 1 PGL, fitting a profile of pseudohypoxia and angiogenesis, but also of aHIF. Moreover, overexpression of aHIF and VEGF marks a higher metastatic potential in PGL.

Free access