Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Frank Duong x
Clear All Modify Search
Free access

Cuong V Duong, Richard D Emes, Frank Wessely, Kiren Yacqub-Usman, Richard N Clayton and William E Farrell

DNA methylation is one of the several epigenetic modifications that together with genetic aberrations are hallmarks of tumorigenesis including those emanating from the pituitary gland. In this study, we examined DNA methylation across 27 578 CpG sites spanning more than 14 000 genes in the major pituitary adenoma subtypes. Genome-wide changes were first determined in a discovery cohort comprising non-functioning (NF), growth hormone (GH), prolactin (PRL)-secreting and corticotroph (CT) adenoma relative to post-mortem pituitaries. Using stringent cut-off criteria, we validated increased methylation by pyrosequencing in 12 of 16 (75%) genes. Overall, these criteria identified 40 genes in NF, 21 in GH, six in PRL and two in CT that were differentially methylated relative to controls. In a larger independent cohort of adenomas, for genes in which hypermethylation had been validated, different frequencies of hypermethylation were apparent, where the KIAA1822 (HHIPL1) and TFAP2E genes were hypermethylated in 12 of 13 NF adenomas whereas the COL1A2 gene showed an increase in two of 13 adenomas. For genes showing differential methylation across and between adenoma subtypes, pyrosequencing confirmed these findings. In three of 12 genes investigated, an inverse relationship between methylation and transcript expression was observed where increased methylation of EML2, RHOD and HOXB1 is associated with significantly reduced transcript expression. This study provides the first genome-wide survey of adenoma, subtype-specific epigenomic changes and will prove useful for identification of biomarkers that perhaps predict or characterise growth patterns. The functional characterisation of identified genes will also provide insight of tumour aetiology and identification of new therapeutic targets.

Restricted access

Veronica R Placencio-Hickok, Anisha Madhav, Sungjin Kim, Frank Duong, Bryan Angara, Zhenqiu Liu and Neil A Bhowmick

While the overall 5-year survival rate for prostate cancer is near 100%, up to 35% of patients will develop recurrent disease. At the time of prostatectomy, prostate-specific antigen (PSA) is used to guide primary therapy with the goal of curative intervention. It can be valuable to know when primary therapy may not in fact be curative, so that subsequent adjuvant therapy can be administered at an early stage to limit progression. We examined prostate cancer patients with PSA ≤10 ng/mL that were all subjected to prostatectomy with at least 5 years of follow-up (n = 181). Based on data that endoglin (CD105) signaling in the tumor can contribute to prostate cancer progression, we examined the expression of soluble CD105 (sCD105) in the patient plasma. To determine the relation of plasma sCD105 measures to cellular CD105 in tissues, we tested an independent set of prostate cancer tissues and paired plasma (n = 31). Elevated sCD105 was found to be associated with recurrence-free survival of prostate cancer patients. Further, sCD105 levels in patient plasma were inversely correlated with cellular CD105 expression. This translational study supported preclinical data demonstrating the pro-tumorigenic capacity of cellular CD105 and provide a blood-based biomarker, sCD105, for prostate cancer recurrence in prostatectomy patients with PSA levels ≤10 ng/mL.