Search Results

You are looking at 1 - 2 of 2 items for

  • Author: G Nesi x
  • All content x
Clear All Modify Search
Free access

G Galli, R Zonefrati, A Gozzini, C Mavilia, V Martineti, I Tognarini, G Nesi, T Marcucci, F Tonelli, M Tommasi, C Casini Raggi, P Pinzani, and M L Brandi

In somatostatinoma, a rare malignant somatostatin (SST)-secreting neoplasia, tumour regression is rarely observed, implying the need for novel antiproliferative strategies. Here, we characterized a long-term culture (SST-secreting cancer (SS-C cells)) established from a human somatostatinoma. High concentrations of SST and chromogranin A were released by SS-C cells and SST release was stimulated by depolarizing stimuli and inhibited by the SST analogue, octreotide. SS-C cells expressed mRNA for SST receptor (SSTR) subtypes 1, 2 and 4, being also able to bind native SST. Moreover, SS-C cells were positively stained with an antibody to SSTR2. SS-C cells also expressed interferon-γ (IFN-γ) receptor mRNA and measurable telomerase activity. Our findings indicate that in vitro exposure of SS-C cells to native SST-28, to octreotide, to IFN-γ, or to 3′-azido-3′deoxythymidine (AZT), a telomerase inhibitor, results in inhibition of SS-C cell proliferation. Concomitant with growth inhibition, apoptosis was detected in SST-, octreotide-, IFN-γ- or AZT-treated SS-C cell cultures. Taken together our results characterized native SST, SST analogues, IFN-γ and a telomerase inhibitor as growth-inhibiting and proapoptotic stimuli in cultured human somatostatinoma cells. Based on these findings, the potential of SST analogues, IFN-γ and AZT, alone or in combination, should be further explored in the medical treatment of somatostatinoma.

Restricted access

S G Creemers, R A Feelders, N Valdes, C L Ronchi, M Volante, B M van Hemel, M Luconi, M H T Ettaieb, M Mannelli, M D Chiara, M Fassnacht, M Papotti, M N Kerstens, G Nesi, H R Haak, F J van Kemenade, and L J Hofland

Adrenocortical carcinoma (ACC) is diagnosed using the histopathological Weiss score (WS), but remains clinically elusive unless it has metastasized or grows locally invasive. Previously, we proposed the objective IGF2 methylation score as diagnostic tool for ACC. This multicenter European cohort study validates these findings. Patient and tumor characteristics were obtained from adrenocortical tumor patients. DNA was isolated from frozen specimens, where after DMR2, CTCF3, and H19 were pyrosequenced. The predictive value of the methylation score for malignancy, defined by the WS or metastasis development, was assessed using receiver operating characteristic curves and logistic and Cox regression analyses. Seventy-six ACC patients and 118 patients with adrenocortical adenomas were included from seven centers. The methylation score and tumor size were independently associated with the pathological ACC diagnosis (OR 3.756 95% CI 2.224–6.343; OR 1.467 95% CI 1.202–1.792, respectively; Hosmer–Lemeshow test P = 0.903), with an area under the curve (AUC) of 0.957 (95% CI 0.930–0.984). The methylation score alone resulted in an AUC of 0.910 (95% CI 0.866–0.952). Cox regression analysis revealed that the methylation score, WS and tumor size predicted development of metastases in univariate analysis. In multivariate analysis, only the WS predicted development of metastasis (OR 1.682 95% CI 1.285–2.202; P < 0.001). In conclusion, we validated the high diagnostic accuracy of the IGF2 methylation score for diagnosing ACC in a multicenter European cohort study. Considering the known limitations of the WS, the objective IGF2 methylation score could potentially provide extra guidance on decisions on postoperative strategies in adrenocortical tumor patients.