Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Hai Fang x
Clear All Modify Search
Free access

Zhen-Xian Du, Ying Yan, Hai-Yan Zhang, Bao-Qin Liu, Yan-Yan Gao, Xiao-Fang Niu, Yifu Guan, Xin Meng and Hua-Qin Wang

Proteasome inhibitors represent a novel class of antitumor agents with pre-clinical and clinical evidence of activity against hematologic malignancies and solid tumors. However, emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that the activation of survival signaling cascades might compromise their antitumoral effects. Peroxiredoxins (PRDXs) are a family of thiol-containing peroxidases identified primarily by their ability to remove cellular hydroperoxides. The function of PRDX1 in particular has been implicated in regulating cell proliferation, differentiation, and apoptosis. Another important finding is that aberrant upregulation of PRDX1 has been discovered in various cancers. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK) kinase kinase that is regulated under conditions of cellular stress. ASK1 phosphorylates c-Jun N-terminal kinase and p38 MAPK, and elicits an apoptotic response. ASK1 activity is regulated at multiple levels, one of which is through interaction with PRDX1. In this study, for the first time we report that upregulation of PRDX1 expression was found in thyroid cancer cells treated with proteasome inhibitors, and PRDX1 knockdown resulted in accelerated proteasome inhibitor-induced cell death. In addition, we demonstrated that ASK1 activity was implicated in the PRDX1-dependent response of thyroid cancer cells to proteasome inhibitor-mediated cell death.

Free access

Yu-fang Bi, Rui-xin Liu, Lei Ye, Hai Fang, Xiao-ying Li, Wei-qing Wang, Ji Zhang, Kan-Kan Wang, Lei Jiang, Ting-wei Su, Zhong-yuan Chen and Guang Ning

Although there has been increased knowledge about the molecular biology of neuroendocrine tumors (NETs), little is known about thymic carcinoids and even less about those with excessive hormone disorders, such as ectopic ACTH syndrome. This study was designed to gain insights into the molecular networks underlying the tumorigenesis of thymic carcinoids with ACTH secretion. By an approach integrating cDNA microarray and methods of computational biology, we compare gene expression profile between ACTH-producing thymic carcinoids and the normal thymus. In total, there are 63 biological categories increased and 108 decreased in thymic carcinoids. Cell proliferation was stimulated, which may explain the relatively uncontrolled cell growth of the tumor. Dysregulation of the Notch-signaling pathway was likely to be underlying the neuroendocrine features of this type of tumors. Moreover, inhibition of immunity and increased neuropeptide signaling molecules (POMC and its sorting molecule CPE) made the clinical manifestation reasonable and thus validated the array data. In conclusion, thymic carcinoids have a distinct gene expression pattern from the normal thymus, and they are characterized by deregulations of a series of biofunctions, which may be involved in the development of NETs. Hence, this study has provided not only a detailed comprehension of the molecular pathogenesis of thymic carcinoids with ectopic ACTH syndrome, but also a road map to approach thymic NETs at the system level.