Search Results
You are looking at 1 - 2 of 2 items for
- Author: Haim Werner x
- Refine by access: All content x
Search for other papers by Zvi Laron in
Google Scholar
PubMed
Search for other papers by Haim Werner in
Google Scholar
PubMed
Many clinical and experimental studies have implicated the growth hormone (GH)–insulin-like growth factor (IGF-1) axis with the progression of cancer. The epidemiological finding that patients with Laron syndrome (LS), the best-characterized disease under the spectrum of congenital IGF-1 deficiencies, do not develop cancer is of major scientific and translational relevance. The evasion of LS patients from cancer emphasizes the central role of the GH–IGF-1 system in cancer biology. To identify genes that are differentially expressed in LS and that might provide a biological foundation for cancer protection, we have recently conducted genome-wide profiling of LS patients and normal controls. Analyses were performed on immortalized lymphoblastoid cell lines derived from individual patients. Bioinformatic analyses identified a series of genes that are either over- or under-represented in LS. Differential expression was demonstrated in a number of gene families, including cell cycle, metabolic control, cytokine–cytokine receptor interaction, Jak-STAT and PI3K-AKT signaling, etc. Major differences between LS and controls were also noticed in pathways associated with cell cycle distribution, apoptosis, and autophagy. The identification of novel downstream targets of the GH–IGF-1 network highlights the biological complexity of this hormonal system and sheds light on previously unrecognized mechanistic aspects associated with GH–IGF-1 action in the cancer cell.
Search for other papers by Lena Lapkina-Gendler in
Google Scholar
PubMed
Search for other papers by Itai Rotem in
Google Scholar
PubMed
Search for other papers by Metsada Pasmanik-Chor in
Google Scholar
PubMed
Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
Search for other papers by David Gurwitz in
Google Scholar
PubMed
Search for other papers by Rive Sarfstein in
Google Scholar
PubMed
Search for other papers by Zvi Laron in
Google Scholar
PubMed
Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
Search for other papers by Haim Werner in
Google Scholar
PubMed
The growth hormone (GH)–insulin-like growth factor-1 (IGF1) pathway emerged in recent years as a critical player in cancer biology. Enhanced expression or activation of specific components of the GH–IGF1 axis, including the IGF1 receptor (IGF1R), is consistently associated with a transformed phenotype. Recent epidemiological studies have shown that patients with Laron syndrome (LS), the best-characterized entity among the congenital IGF1 deficiencies, seem to be protected from cancer development. To identify IGF1-dependent genes and signaling pathways associated with cancer protection in LS, we conducted a genome-wide analysis using immortalized lymphoblastoid cells derived from LS patients and healthy controls of the same gender, age range, and ethnic origin. Our analyses identified a collection of genes that are either over- or under-represented in LS-derived lymphoblastoids. Gene differential expression occurs in several gene families, including cell cycle, metabolic control, cytokine–cytokine receptor interaction, Jak-STAT signaling, and PI3K-AKT signaling. Major differences between LS and healthy controls were also noticed in pathways associated with cell cycle distribution, apoptosis, and autophagy. Our results highlight the key role of the GH–IGF1 axis in the initiation and progression of cancer. Furthermore, data are consistent with the concept that homozygous congenital IGF1 deficiency may confer protection against future tumor development.