Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jérôme Cros x
  • All content x
Clear All Modify Search
Free access

Louis de Mestier, Jean-Baptiste Danset, Cindy Neuzillet, Vinciane Rebours, Jérôme Cros, Nadem Soufir, and Pascal Hammel

Germline BRCA2 mutations are the first known cause of inherited (familial) pancreatic ductal adenocarcinoma (PDAC). This tumor is the third most frequent cancer in carriers of germline BRCA2 mutations, as it occurs in around 10% of BRCA2 families. PDAC is known as one of the most highly lethal cancers, mainly because of its chemoresistance and frequently late diagnosis. Based on recent developments in molecular biology, a subgroup of BRCA2-associated PDAC has been created, allowing screening, early surgical treatment and personalized systemic treatment. BRCA2 germline mutation carriers who have ≥1 first-degree relative, or ≥2 blood relatives with PDAC, should undergo screening and regular follow-up based on magnetic resonance imaging and endoscopic ultrasound. The goal of screening is to detect early invasive PDAC and advanced precancerous lesions suitable for a stepwise surgical complete (R0) resection. Increasing evidence on the molecular role of the BRCA2 protein in the homologous recombination of DNA damages suggest that BRCA2-related PDAC are sensitive to agents causing DNA cross-linking damage, such as platinum salts, and treatments targeting rescue DNA repair pathways, such as poly(ADP-ribose) polymerase inhibitors that are currently under investigation.

Free access

Louis de Mestier, Anne Couvelard, Anela Blazevic, Olivia Hentic, Wouter W de Herder, Vinciane Rebours, Valérie Paradis, Philippe Ruszniewski, Leo J Hofland, and Jérôme Cros

The efficacy of alkylating agents (temozolomide, dacarbazine, streptozotocin) in patients with advanced neuroendocrine tumors (NETs) has been well documented, especially in pancreatic NETs. Alkylating agents transfer methyl adducts on DNA bases. Among them, O6-methylguanine accounts for many of their cytotoxic effects and can be repaired by the O6-methylguanine-methyltransferase (MGMT). However, whether the tumor MGMT status could be a reliable biomarker of efficacy of alkylating agents in NETs is still a matter of debate. Herein, we sought to provide a critical appraisal of the role of the MGMT status in NETs. After reviewing the molecular mechanisms of repair of DNA damage induced by alkylating agents, we aimed to comprehensively review the methods of determination of the MGMT status and its impact on prognosis, prediction of objective response and progression-free survival in patients with advanced digestive NETs treated by alkylating agents. About half of pancreatic NETs are MGMT-deficient, as determined by impaired tumor MGMT expression or by MGMT promoter methylation. Overall, while published studies are heterogeneous and mostly limited in size, they advocate that MGMT deficiency may be a relevant biomarker for increased objective response rate, prolonged progression-fee survival and overall survival in patients with advanced NETs treated by alkylating agents. While these data require confirmation in prospective controlled studies, future research should focus on the standardization of MGMT status assessment. Additional mechanisms of repair of DNA damages induced by alkylating agents should be explored in order to identify biomarkers complementary to MGMT and targets for potential antitumor synergy, such as PARP.