Search Results
You are looking at 1 - 1 of 1 items for
- Author: Jayanagendra Rayapureddi x
- Refine by access: All content x
Search for other papers by Viktoria Evdokimova in
Google Scholar
PubMed
Search for other papers by Manoj Gandhi in
Google Scholar
PubMed
Search for other papers by Jayanagendra Rayapureddi in
Google Scholar
PubMed
Search for other papers by James R Stringer in
Google Scholar
PubMed
Search for other papers by Yuri E Nikiforov in
Google Scholar
PubMed
Ionizing radiation (IR) exposure increases the risk of thyroid cancer and other cancer types. Chromosomal rearrangements, such as RET/PTC, are characteristic features of radiation-associated thyroid cancer and can be induced by radiation in vitro. IR causes double-strand breaks (DSBs), suggesting that such damage leads to RET/PTC, but the rearrangement mechanism has not been established. To study the mechanism, we explored the possibility of inducing RET/PTC by electroporation of restriction endonucleases (REs) into HTori-3 human thyroid cells. We used five REs, which induced DSB in a dose-dependent manner similar to that seen with IR. Although all but one RE caused DSB in one or more of the three genes involved in RET/PTC, rearrangement was detected only in cells electroporated with either PvuII (25 and 100 U) or StuI (100 and 250 U). The predominant rearrangement type was RET/PTC3, which is characteristic of human thyroid cancer arising early after Chernobyl-related radioactive iodine exposure. Both enzymes that produced RET/PTC had restriction sites only in one of the two fusion partner genes. Moreover, the two enzymes that produced RET/PTC had restriction sites present in clusters, which was not the case for RE that failed to induce RET/PTC. In summary, we establish a model of DSB induction by RE and report for the first time the formation of carcinogenic chromosomal rearrangements, predominantly RET/PTC3, as a result of DSB produced by RE. Our data also raise a possibility that RET/PTC rearrangement can be initiated by a complex DSB that is induced in one of the fusion partner genes.