Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Ji Won Kim x
Clear All Modify Search
Restricted access

Ji Won Kim, Dharmendra K. Yadav, Soo Jin Kim, Moo-Yeol Lee, Jung-Min Park, Bum Seok Kim, Mi-hyun Kim, Hyeung-geun Park and Keon Wook Kang

GV1001, a 16-amino acid fragment of the human telomerase reverse transcriptase catalytic subunit (hTERT), has been developed as an injectable formulation of cancer vaccine. Here, we revealed for the first time that GV1001 is a novel ligand for gonadotropin-releasing hormone receptor (GnRHR). The docking prediction for GV1001 against GnRHR showed high binding affinity. Binding of GV1001 to GnRHR stimulated the Gαs-coupled cAMP signaling pathway and antagonized Gαq-coupled Ca2+ release by leuprolide acetate (LA), a GnRHR agonist. Repeated injection of GV1001 attenuated both serum testosterone level and seminal vesicle weight via desensitization of hypothalamic-pituitary-gonadal (HPG) axis. We then tested whether GV1001 has an inhibitory effect on tumor growth of LNCaP cells, androgen receptor–positive human prostate cancer (PCa) cells. GV1001 significantly inhibited tumor growth and induced apoptosis in LNCaP-implanted xenografts. Interestingly, mRNA expressions of matrix metalloproteinase2 and matrix metalloproteinase9 were suppressed by GV1001, but not by LA. Moreover, GV1001 significantly inhibited the proliferation and migration of PCa cells and induced apoptosis in a concentration-dependent manner. Our findings suggest that GV1001 functions as a biased GnRHR ligand to selectively stimulate the Gαs/cAMP pathway, with anti-proliferative and anti-migratory effects on human PCa.

Restricted access

Ji Won Kim, Dharmendra K Yadav, Soo Jin Kim, Moo-Yeol Lee, Jung-Min Park, Bum Seok Kim, Mi-hyun Kim, Hyeung-geun Park and Keon Wook Kang

GV1001, a 16-amino acid fragment of the human telomerase reverse transcriptase catalytic subunit (hTERT), has been developed as an injectable formulation of cancer vaccine. Here, we revealed for the first time that GV1001 is a novel ligand for gonadotropin-releasing hormone receptor (GnRHR). The docking prediction for GV1001 against GnRHR showed high binding affinity. Binding of GV1001 to GnRHR stimulated the Gαs-coupled cAMP signaling pathway and antagonized Gαq-coupled Ca2+ release by leuprolide acetate (LA), a GnRHR agonist. Repeated injection of GV1001 attenuated both serum testosterone level and seminal vesicle weight via desensitization of hypothalamic–pituitary–gonadal (HPG) axis. We then tested whether GV1001 has an inhibitory effect on tumor growth of LNCaP cells, androgen receptor–positive human prostate cancer (PCa) cells. GV1001 significantly inhibited tumor growth and induced apoptosis in LNCaP-implanted xenografts. Interestingly, mRNA expressions of matrix metalloproteinase 2 and matrix metalloproteinase 9 were suppressed by GV1001, but not by LA. Moreover, GV1001 significantly inhibited the proliferation and migration of PCa cells and induced apoptosis in a concentration-dependent manner. Our findings suggest that GV1001 functions as a biased GnRHR ligand to selectively stimulate the Gαs/cAMP pathway, with anti-proliferative and anti-migratory effects on human PCa.

Full access

Tae Hyuk Kim, Young-Eun Kim, Soomin Ahn, Ji-Youn Kim, Chang-Seok Ki, Young Lyun Oh, Kyunga Kim, Jae Won Yun, Woong-Yang Park, Jun-Ho Choe, Jung-Han Kim, Jee Soo Kim, Sun Wook Kim and Jae Hoon Chung

TERT promoter mutations are emerging prognostic biomarkers in multiple cancers and are found in highly aggressive thyroid cancer. Our aim is to investigate the prognostic value of these mutations for the outcome of thyroid cancer-related mortality in a large cohort of thyroid cancer patients. This was a retrospective study of 409 patients (393 with differentiated thyroid cancer) with a median age of 44 years (range 16–81 years) and median follow-up of 13 years (interquartile range 11–16 years). Analyses of associations between mutational status and various clinicopathological variables were performed. TERT promoter mutations were identified in 32 (9.8%) papillary, 11 (16.7%) follicular and seven (43.8%) poorly differentiated/anaplastic thyroid cancer patients. The presence of TERT promoter mutations was associated with factors such as increased age (P < 0.001), extrathyroidal invasion (P = 0.01), increased stage at diagnosis (P < 0.001) and dedifferentiated histological type (P = 0.001). A TERT promoter mutation was independently associated with poorer overall survival in patients with differentiated thyroid cancer (10-year survival rate, 66.2% vs 98.3% for wild type; adjusted HR, 7.18; 95% CI: 2.77–18.59) and in patients with papillary cancer (74.2% vs 99.3%; 14.20; 3.03–66.68). Concomitant TERT and BRAF mutations worsened the survival rate of patients with papillary cancer (82.6% vs 99.4% for exclusively BRAF mutation alone; 5.62; 1.85–17.09). In conclusion, the presence of TERT promoter mutations is independently associated with increased mortality in patients with differentiated thyroid cancer. The results suggest that inclusion of TERT promoter mutation analysis with conventional clinicopathological evaluation can lead to better prognostication and management for individual patients.