Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Jian Ma x
Clear All Modify Search
Full access

Zijie Feng, Jian Ma and Xianxin Hua

There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.

Full access

Xiaqing Xu, Meimei Si, Honggang Lou, Youyou Yan, Yunxi Liu, Hong Zhu, Xiaoe Lou, Jian Ma, Difeng Zhu, Honghai Wu, Bo Yang, Haoshu Wu, Ling Ding and Qiaojun He

Accumulating clinical evidence indicates that diabetic liver cancer patients are less sensitive to intra-arterial chemotherapy than non-diabetic cancer patients. However, the underlying mechanism remains largely uncharacterized. Here, we report that hyperglycemia inhibits AMPK pathway and subsequently reduces adriamycin (ADR)-induced DNA damage, resulting in decreased chemotherapeutic sensitivity of ADR. HepG2 and Bel-7402 cells were treated with ADR in various glucose conditions and then subjected to cell proliferation assay and apoptosis. The IC50 of ADR greatly increased with the increasing concentration of glucose (15 ± 4 nM to 93 ± 39 nM in HepG2, 78 ± 8 nM to 1310 ± 155 nM in Bel-7402). Both FACs and Western blot analysis indicated that high concentration of glucose protected cells from ADR-induced apoptosis. Mouse hepatoma H22 xenografts were established both in db/db diabetic mice and STZ-induced diabetic mice. The inhibitory effect in tumor growth of ADR was significantly reduced in diabetic mice, which could be recovered by insulin therapy. Hyperglycemia greatly ameliorated AMPK activation and H2AX expression caused by ADR treatment. Pretreatment with compound C or AMPK silencing eliminated hyperglycemia reduced cytotoxicity of ADR. However, the impaired cytotoxicity in hyperglycemia was recovered by treatment with AMPK activator AICAR. This study indicates that hyperglycemia impairs the chemotherapeutic sensitivity of ADR by downregulating AMPK pathway and reducing ADR-induced DNA damage.