Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Joanne Ngeow x
Clear All Modify Search
Free access

Diana Lim and Joanne Ngeow

The effectiveness of poly (ADP-ribose) polymerase inhibitors (PARPi) in treating cancers associated with BRCA1/2 mutations hinges upon the concept of synthetic lethality and exemplifies the principles of precision medicine. Currently, most clinical trials are recruiting patients based on pathological subtypes or have included BRCA mutation analysis (germ line and/or somatic) as part of the selection criteria. Mounting evidence, however, suggests that these drugs may also be efficacious in tumors with defects in other genes involved in the homologous recombination repair pathway. Advances in molecular profiling techniques together with increased research efforts have led to a better understanding of the molecular aberrations underlying this BRCA-like phenotype and helped broaden the concept of BRCAness. Hence, it is likely that the list of predictive biomarkers for PARPi therapy will increase in future. There is currently no gold standard method of testing for PARPi response and no universal guidelines are in place on how to incorporate biomarker testing into routine clinical diagnostics. In this review, we explore the concept of BRCAness and highlight the different methods that have been used to identify patients who may benefit from the use of these anticancer agents. The identification of predictive biomarkers is crucial in improving patient selection and expanding the clinical applications of PARPi therapy.

Free access

Samantha Peiling Yang and Joanne Ngeow

Familial non-medullary thyroid cancer (FNMTC) constitutes 3–9% of all thyroid cancers. Out of all FNMTC cases, only 5% in the syndromic form has well-studied driver germline mutations. These associated syndromes include Cowden syndrome, familial adenomatous polyposis, Gardner syndrome, Carney complex type 1, Werner syndrome and DICER1 syndrome. It is important for the clinician to recognize these phenotypes so that genetic counseling and testing can be initiated to enable surveillance for associated malignancies and genetic testing of family members. The susceptibility chromosomal loci and genes of 95% of FNMTC cases remain to be characterized. To date, 4 susceptibility genes have been identified (SRGAP1 gene (12q14), TITF-1/NKX2.1 gene (14q13), FOXE1 gene (9q22.33) and HABP2 gene (10q25.3)), out of which only the FOXE1 and the HABP2 genes have been validated by separate study groups. The causal genes located at the other 7 FNMTC-associated chromosomal loci (TCO (19q13.2), fPTC/ PRN (1q21), FTEN (8p23.1-p22), NMTC1 (2q21), MNG1 (14q32), 6q22, 8q24) have yet to be identified. Increasingly, gene regulatory mechanisms (miRNA and enhancer elements) are recognized to affect gene expression and FNMTC tumorigenesis. With newer sequencing technique, along with functional studies, there has been progress in the understanding of the genetic basis of FNMTC. In our review, we summarize the FNMTC studies to date and provide an update on the recently reported susceptibility genes including novel germline SEC23B variant in Cowden syndrome, SRGAP1 gene, FOXE1 gene and HABP2 genes in non-syndromic FNMTC.

Free access

Sock Hoai Chan and Joanne Ngeow

Genomic instability is a feature of cancer that fuels oncogenesis through increased frequency of genetic disruption, leading to loss of genomic integrity and promoting clonal evolution as well as tumor transformation. A form of genomic instability prevalent across cancer types is chromosomal instability, which involves karyotypic changes including chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a therapeutic strategy.

Free access

Zi Ying Tan, Taosheng Huang and Joanne Ngeow

Hereditary cancer predisposition syndromes are associated with germline mutations that lead to increased vulnerability for an individual to develop cancers. Such germline mutations in tumour suppressor genes, oncogenes and genes encoding for proteins essential in DNA repair pathways and cell cycle control can cause overall chromosomal instability in the genome and increase risk in developing cancers. Gene correction of these germline mutations to restore normal protein functions is anticipated as a new therapeutic option. This can be achieved through disruption of gain-of-function pathogenic mutation, restoration of loss-of-function mutation, addition of a transgene essential for cell function and single nucleotide changes. Genome editing tools are applicable to precise gene correction. Development of genome editing tools comes in two waves. The first wave focuses on improving targeting specificity and editing efficiency of nucleases, and the second wave of gene editing draws on innovative engineering of fusion proteins combining deactivated nucleases and other enzymes that are able to create limitless functional molecular tools. This gene editing advancement is going to impact medicine, particularly in hereditary cancers. In this review, we discuss the application of gene editing as an early intervention and possible treatment for hereditary cancers, by highlighting a selection of highly penetrant cancer syndromes as examples of how this may be achieved in clinical practice.

Free access

Joanne Y Y Ngeow and Laura S Ward

Open access

Ying Ni, Spencer Seballos, Shireen Ganapathi, Danielle Gurin, Benjamin Fletcher, Joanne Ngeow, Rebecca Nagy, Richard T Kloos, Matthew D Ringel, Thomas LaFramboise and Charis Eng

Along with breast and endometrial cancers, thyroid cancer is a major component cancer in Cowden syndrome (CS). Germline variants in SDHB/C/D (SDHx) genes account for subsets of CS/CS-like cases, conferring a higher risk of breast and thyroid cancers over those with only germline PTEN mutations. To investigate whether SDHx alterations at both germline and somatic levels occur in apparently sporadic breast cancer and differentiated thyroid cancer (DTC), we analyzed SDHx genes in the following four groups: i) 48 individuals with sporadic invasive breast adenocarcinoma for germline mutation; ii) 48 (expanded to 241) DTC for germline mutation; iii) 37 pairs DTC tumor-normal tissues for germline and somatic mutation and mRNA expression levels; and iv) data from 476 patients in the Cancer Genome Atlas thyroid carcinoma dataset for validation. No germline SDHx variant was found in a pilot series of 48 breast cancer cases. As germline SDHx variants were found in our pilot of 48 thyroid cancer cases, we expanded to three series of DTC comprising a total 754 cases, and found 48 (6%) with germline SDHx variants (P<0.001 compared with 0/350 controls). In 513 tumors, we found 27 (5%) with large somatic duplications within chromosome 1 encompassing SDHC. Both papillary and follicular thyroid tumors showed consistent loss of SDHC/D gene expression (P<0.001), which is associated with earlier disease onset and higher pathological-TNM stage. Therefore, we conclude that both germline and somatic SDHx mutations/variants occur in sporadic DTC but are very rare in sporadic breast cancer, and overall loss of SDHx gene expression is a signature of DTC.

Free access

Hartmut P Neumann, William F Young Jr, Tobias Krauss, Jean-Pierre Bayley, Francesca Schiavi, Giuseppe Opocher, Carsten C Boedeker, Amit Tirosh, Frederic Castinetti, Juri Ruf, Dmitry Beltsevich, Martin Walz, Harald-Thomas Groeben, Ernst von Dobschuetz, Oliver Gimm, Nelson Wohllk, Marija Pfeifer, Delmar M Lourenço Jr, Mariola Peczkowska, Attila Patocs, Joanne Ngeow, Özer Makay, Nalini S Shah, Arthur Tischler, Helena Leijon, Gianmaria Pennelli, Karina Villar Gómez de las Heras, Thera P Links, Birke Bausch and Charis Eng

Although the authors of the present review have contributed to genetic discoveries in the field of pheochromocytoma research, we can legitimately ask whether these advances have led to improvements in the diagnosis and management of patients with pheochromocytoma. The answer to this question is an emphatic Yes! In the field of molecular genetics, the well-established axiom that familial (genetic) pheochromocytoma represents 10% of all cases has been overturned, with >35% of cases now attributable to germline disease-causing mutations. Furthermore, genetic pheochromocytoma can now be grouped into five different clinical presentation types in the context of the ten known susceptibility genes for pheochromocytoma-associated syndromes. We now have the tools to diagnose patients with genetic pheochromocytoma, identify germline mutation carriers and to offer gene-informed medical management including enhanced surveillance and prevention. Clinically, we now treat an entire family of tumors of the paraganglia, with the exact phenotype varying by specific gene. In terms of detection and classification, simultaneous advances in biochemical detection and imaging localization have taken place, and the histopathology of the paraganglioma tumor family has been revised by immunohistochemical-genetic classification by gene-specific antibody immunohistochemistry. Treatment options have also been substantially enriched by the application of minimally invasive and adrenal-sparing surgery. Finally and most importantly, it is now widely recognized that patients with genetic pheochromocytoma/paraganglioma syndromes should be treated in specialized centers dedicated to the diagnosis, treatment and surveillance of this rare neoplasm.

Free access

Tobias Krauss, Alfonso Massimiliano Ferrara, Thera P Links, Ulrich Wellner, Irina Bancos, Andrey Kvachenyuk, Karina Villar Gómez de las Heras, Marina Y Yukina, Roman Petrov, Garrett Bullivant, Laura von Duecker, Swati Jadhav, Ursula Ploeckinger, Staffan Welin, Camilla Schalin-Jäntti, Oliver Gimm, Marija Pfeifer, Joanne Ngeow, Kornelia Hasse-Lazar, Gabriela Sansó, Xiaoping Qi, M Umit Ugurlu, Rene E Diaz, Nelson Wohllk, Mariola Peczkowska, Jens Aberle, Delmar M Lourenço Jr, Maria A A Pereira, Maria C B V Fragoso, Ana O Hoff, Madson Q Almeida, Alice H D Violante, Ana R P Quidute, Zhewei Zhang, Mònica Recasens, Luis Robles Díaz, Tada Kunavisarut, Taweesak Wannachalee, Sirinart Sirinvaravong, Eric Jonasch, Simona Grozinsky-Glasberg, Merav Fraenkel, Dmitry Beltsevich, Viacheslav I Egorov, Dirk Bausch, Matthias Schott, Nikolaus Tiling, Gianmaria Pennelli, Stefan Zschiedrich, Roland Därr, Juri Ruf, Timm Denecke, Karl-Heinrich Link, Stefania Zovato, Ernst von Dobschuetz, Svetlana Yaremchuk, Holger Amthauer, Özer Makay, Attila Patocs, Martin K Walz, Tobias B Huber, Jochen Seufert, Per Hellman, Raymond H Kim, Ekaterina Kuchinskaya, Francesca Schiavi, Angelica Malinoc, Nicole Reisch, Barbara Jarzab, Marta Barontini, Andrzej Januszewicz, Nalini Shah, William F Young Jr, Giuseppe Opocher, Charis Eng, Hartmut P H Neumann and Birke Bausch

Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel–Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10–75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2 cm; P < 0.001) and tumor volume doubling time (TVDT) was faster (22 vs 126 months; P = 0.001). All metastatic tumors were ≥2.8 cm. Codons 161 and 167 were hotspots for VHL germline mutations with enhanced risk for metastatic PanNETs. Multivariate prediction modeling disclosed maximum tumor diameter and TVDT as significant predictors for metastatic disease (positive and negative predictive values of 51% and 100% for diameter cut-off ≥2.8 cm, 44% and 91% for TVDT cut-off of ≤24 months). In 117 of 273 patients, PanNETs >1.5 cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs <2.8 cm vs ≥2.8 cm (94% vs 85% by 10 years; P = 0.020; 80% vs 50% at 10 years; P = 0.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8 cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs.