Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Johanna Arola x
Clear All Modify Search
Free access

Susanna Vuorenoja, Bidut Prava Mohanty, Johanna Arola, Ilpo Huhtaniemi, Jorma Toppari and Nafis A Rahman

Lytic peptide Hecate (23-amino acid (AA)) fused with a 15-AA fragment of human chorionic gonadotropin-β (CG-β), Hecate-CGβ conjugate (H-CGβ-c) selectively binds to and destroys tumor cells expressing LH/chorionic gonadotropin receptor (Lhcgr). Transgenic mice (6.5 month old) expressing SV40 T-antigen under the inhibin-α promoter (inhα/Tag) presenting with Lhcgr expressing adrenal tumors were treated either with H-CGβ-c, GnRH antagonist (GnRH-a), estradiol (E2; only females) or their combinations for 1 month. We expected that GnRH-a or E2 in combination with H-CGβ-c could improve the treatment efficacy especially in females by decreasing circulating LH and eliminating the potential competition of serum LH with the H-CGβ-c. GnRH-a and H-CGβ-c treatments were successful in males (adrenal weights 14±2.8 mg and 60±26 vs 237±59 mg in controls; P<0.05). Histopathologically, GnRH-a apparently destroyed the adrenal parenchyma leaving only the fibrotic capsule with few necrotic foci. In females, H-CGβ-c was totally ineffective, whereas GnRH-a (19±5 mg) or E2 (77±50 mg) significantly reduced the adrenal weights compared with controls (330±70 mg). Adrenal morphometry, cell proliferation markers, post-treatment suppression of serum progesterone, and quantitative RT-PCR of GATA-4, Lhcgr, and GATA-6 further supported the positive outcome. H-CGβ-c selectively killed the Lhcgr expressing tumor cells, whereas GnRH-a blocked tumor progression through gonadotropin suppression, emphasizing the gonadotropin dependency of these adrenocortical tumors. If extrapolated to humans, H-CGβ-c could be considered for the treatment of gonadotropin-dependent adrenal tumors in males, whereas in females gonadotropin suppression, but not H-CGβ-c, would work better.

Free access

Valtter B Virtanen, Eero Pukkala, Reetta Kivisaari, Perttu P Salo, Antti Koivusalo, Johanna Arola, Päivi J Miettinen, Risto J Rintala, Markus Perola and Mikko P Pakarinen

The objective of this study was to assess the occurrence of thyroid cancer and co-occurring RET mutations in a population-based cohort of adult Hirschsprung disease (HD) patients. All 156 patients operated for HD in a tertiary center during 1950–1986 were followed for thyroid malignancies up to 2010 through the nationwide Finnish Cancer Registry. Ninety-one individuals participated in clinical and genetic screening, which included serum calcitonin and thyroid ultrasound (US) with cytology. Exons 10, 11, 13, and 16 were sequenced in all, and all exons of RET in 43 of the subjects, including those with thyroid cancer, RET mutations, suspicious clinical findings, and familial or long-segment disease. Through the cancer registry, two cases (aged 35 and 37 years) of medullary thyroid cancer (MTC) were observed; the incidence for MTC was 340-fold (95% CI 52–1600) compared with average population. These individuals had C611R and C620R mutations in exon 10. One papillary thyroid cancer without RET mutations was detected by clinical screening. Four subjects (aged 31–50 years) with co-occurring RET mutations in exons 10 (C609R; n=1) and 13 (Y791F, n=3) had sporadic short-segment HD with normal thyroid US and serum calcitonin. Three novel mutations and five single-nucleotide polymorphisms were found outside exons 10 and 13 without associated signs of thyroid cancer. MTC-associated RET mutations were restricted to exons 10 and 13 affecting ∼5% of unselected adults with HD. Clinical thyroid assessment did not improve accuracy of genetic screening, which should not be limited to patients with familial or long-segment disease.

Free access

Ernst von Dobschuetz, Helena Leijon, Camilla Schalin-Jäntti, Francesca Schiavi, Michael Brauckhoff, Mariola Peczkowska, Giovanna Spiazzi, Serena Demattè, Maria Enrica Cecchini, Paola Sartorato, Jolanta Krajewska, Kornelia Hasse-Lazar, Katarzyna Roszkowska-Purska, Elisa Taschin, Angelica Malinoc, Lars A Akslen, Johanna Arola, Dariusz Lange, Ambrogio Fassina, Gianmaria Pennelli, Mattia Barbareschi, Jutta Luettges, Aleksander Prejbisz, Andrzej Januszewicz, Tim Strate, Birke Bausch, Frederic Castinetti, Barbara Jarzab, Giuseppe Opocher, Charis Eng and Hartmut P H Neumann

The precise diagnosis of thyroid neoplasias will guide surgical management. Primary thyroid paraganglioma has been rarely reported. Data on prevalence, immunohistochemistry (IHC), and molecular genetics in a systematic series of such patients are pending. We performed a multinational population-based study on thyroid paraganglioma and analyzed prevalence, IHC, and molecular genetics. Patients with thyroid paraganglioma were recruited from the European-American-Head-and-Neck-Paraganglioma-Registry. Demographic and clinical data were registered. Histopathology and IHC were re-investigated. All patients with thyroid paraganglioma underwent molecular genetic analyses of the SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, RET, TMEM127, and MAX genes. Analyses included Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) for detection of large rearrangements. Of 947 registrants, eight candidates were initially identified. After immunohistochemical analyses of these eight subjects, 5 (0.5%) were confirmed to have thyroid paraganglioma. IHC was positive for chromogranin, synaptophysin, and S-100 and negative for calcitonin in all five thyroid paragangliomas, whereas the three excluded candidate tumors stained positive for pan-cytokeratin, a marker excluding endocrine tumors. Germline variants, probably representing mutations, were found in four of the five confirmed thyroid paraganglioma cases, two each in SDHA and SDHB, whereas the excluded cases had no mutations in the tested genes. Thyroid paraganglioma is a finite entity, which must be differentiated from medullary thyroid carcinoma, because medical, surgical, and genetic management for each is different. Notably, approximately 80% of thyroid paragangliomas are associated with germline variants, with implications for additional tumors and a potential risk for the family. As opposed to sporadic tumors, surgical management and extent of resection are different for heritable tumors, each guided by the precise gene involved.