Search Results

You are looking at 1 - 5 of 5 items for

  • Author: John Martens x
Clear All Modify Search
Free access

Anika Nagelkerke, Anieta M Sieuwerts, Johan Bussink, Fred C G J Sweep, Maxime P Look, John A Foekens, John W M Martens and Paul N Span

Lysosome-associated membrane protein 3 (LAMP3) is a member of the LAMP-family of proteins, which are involved in the process of autophagy. Autophagy is induced by tamoxifen in breast cancer cells and may contribute to tamoxifen resistance. In this study, the significance of LAMP3 for tamoxifen resistance in breast cancer was examined. The methods employed included use of clonogenic assays to assess the survival of MCF7 breast cancer cells with LAMP3 knockdown after tamoxifen treatment and of quantitative real-time PCR of LAMP3 to evaluate its predictive value for first-line tamoxifen treatment in patients with advanced breast cancer. Results show that tamoxifen treatment of MCF7 cells induced LAMP3 mRNA expression. LAMP3 knockdown in these cells increased tamoxifen sensitivity. Evaluation of expression of the autophagy markers, LC3B and p62, after LAMP3 knockdown showed increased expression levels, indicating that cells with LAMP3 knockdown have a suppressed ability to complete the autophagic process. In addition, knockdown of autophagy-associated genes resulted in sensitization to tamoxifen. Next, tamoxifen-resistant MCF7 cells were cultured. These cells had a sevenfold higher LAMP3 mRNA expression, showed elevated basal autophagy levels, and could be significantly resensitized to tamoxifen by LAMP3 knockdown. In patients treated with first-line tamoxifen for advanced disease (n=304), high LAMP3 mRNA expression was associated with shorter progression-free survival (P=0.003) and shorter post-relapse overall survival (P=0.040), also in multivariate analysis. Together, these results indicate that LAMP3 contributes to tamoxifen resistance in breast cancer. Tamoxifen-resistant cells are resensitized to tamoxifen by the knockdown of LAMP3. Therefore, LAMP3 may be clinically relevant to countering tamoxifen resistance in breast cancer patients.

Restricted access

Marijn A Vermeulen, Carolien H M van Deurzen, Shusma C Doebar, Wendy W J de Leng, John W M Martens, Paul J van Diest and Cathy B Moelans

Ductal carcinoma in situ (DCIS) of the male breast is very rare and has hardly been studied molecularly. In males, we compared methylation status of 25 breast cancer-related genes in pure DCIS (n = 18) and invasive breast carcinoma (IBC) with adjacent DCIS (DCIS-AIC) (n = 44) using methylation-specific multiplex ligation-dependent probe amplification. Results were compared to female breast cancer (BC). There were no significant differences in methylation features between male pure DCIS, DCIS-AIC and IBC after correction for multiple comparisons. In paired analysis of IBC and adjacent DCIS, CADM1 showed a significantly higher absolute methylation percentage in DCIS (P = 0.002). In cluster analysis, two clusters stood out with respectively infrequent and frequent methylation (GATA5, KLLN, PAX6, PAX5, CDH13, MSH6 and WT1 were frequently methylated). Compared to female DCIS, methylation was in general much less common in male DCIS, especially for VHL, ESR1, CDKN2A, CD44, CHFR, BRCA2, RB1 and STK11. In contrast, THBS1 and GATA5 were more frequently methylated in male DCIS. In conclusion, there is frequent methylation of GATA5, KLLN, PAX6, PAX5, CDH13, MSH6 and WT1 in male DCIS. Since there was little change in the methylation status for the studied genes from pure male DCIS to DCIS-AIC and IBC, methylation of these seven genes is more likely to occur early in male breast carcinogenesis. Based on the current markers male DCIS seems to be an epigenetically more advanced precursor of male BC, although in comparison to its female counterpart it appears that fewer loci harbor methylation, pointing to differences between male and female breast carcinogenesis with regard to the studied loci.

Free access

Marijn A Vermeulen, Shusma C Doebar, Carolien H M van Deurzen, John W M Martens, Paul J van Diest and Cathy B Moelans

Characterizing male breast cancer (BC) and unraveling male breast carcinogenesis is challenging because of the rarity of this disease. We investigated copy number status of 22 BC-related genes in 18 cases of pure ductal carcinoma in situ (DCIS) and in 49 cases of invasive carcinoma (IC) with adjacent DCIS (DCIS-AIC) in males using multiplex ligation-dependent probe amplification (MLPA). Results were compared to female BC and correlated with survival. Overall, copy number ratio and aberration frequency including all 22 genes showed no significant difference between the 3 groups. Individual unpaired analysis revealed a significantly higher MTDH copy number ratio in IC compared to DCIS-AIC and pure DCIS (P = 0.009 and P = 0.038, respectively). ADAM9 showed a significantly lower copy number aberration frequency in male BC, compared to female BC (P = 0.020). In DCIS-AIC, MTDH, CPD, CDC6 and TOP2A showed a lower frequency of copy number increase in males compared to females (P < 0.001 for all 4 genes). In IC, CPD gain and CCNE1 gain were independent predictors of poor overall survival. In conclusion, male DCIS and IC showed a similar copy number profile for 21 out of 22 interrogated BC-related genes, illustrating their clonal relation and the genetically advanced state of male DCIS. MTDH showed a higher copy number ratio in IC compared to adjacent and pure DCIS and may therefore play a role in male breast carcinogenesis. Differences were detected between male and female DCIS for 4 genes pointing to differences in breast carcinogenesis between the sexes.

Restricted access

Marie Colombe Agahozo, Anieta M Sieuwerts, S Charlane Doebar, Esther I Verhoef, Corine M Beaufort, Kirsten Ruigrok-Ritstier, Vanja de Weerd, Hein F B M Sleddens, Winand N M Dinjens, John W M Martens and Carolien H M van Deurzen

PIK3CA is one of the most frequently mutated genes in invasive breast cancer (IBC). These mutations are generally associated with hyper-activation of the phosphatidylinositol 3-kinase signaling pathway, which involves increased phosphorylation of AKT (p-AKT). This pathway is negatively regulated by the tumor suppressor PTEN. Data are limited regarding the variant allele frequency (VAF) of PIK3CA, PTEN and p-AKT expression during various stages of breast carcinogenesis. Therefore, the aim of this study was to gain insight into PIK3CA VAF and associated PTEN and p-AKT expression during the progression from ductal carcinoma in situ (DCIS) to IBC. We isolated DNA from DCIS tissue, synchronous IBC and metastasis when present. These samples were pre-screened for PIK3CA hotspot mutations using the SNaPshot assay and, if positive, validated and quantified by digital PCR. PTEN and p-AKT expression was evaluated by immunohistochemistry using the Histo-score (H-score). Differences in PIK3CA VAF, PTEN and p-AKT H-scores between DCIS and IBC were analyzed. PIK3CA mutations were detected in 17 out of 73 DCIS samples, 16 out of 73 IBC samples and 3 out of 23 lymph node metastasis. We detected a significantly higher VAF of PIK3CA in the DCIS component compared to the adjacent IBC component (P = 0.007). The expression of PTEN was significantly higher in DCIS compared to the IBC component in cases with a wild-type (WT) PIK3CA status (P = 0.007), while it remained similar in both components when PIK3CA was mutated. There was no difference in p-AKT expression between DCIS and the IBC component. In conclusion, our data suggest that PIK3CA mutations could be essential specifically in early stages of breast carcinogenesis. In addition, these mutations do not co-occur with PTEN expression during DCIS progression to IBC in the majority of patients. These results may contribute to further unraveling the process of breast carcinogenesis, and this could aid in the development of patient-specific treatment.

Restricted access

Cathy B Moelans, Joep de Ligt, Petra van der Groep, Pjotr Prins, Nicolle J M Besselink, Marlous Hoogstraat, Natalie D ter Hoeve, Miangela M Lacle, Robert Kornegoor, Carmen C van der Pol, Wendy W J de Leng, Ellis Barbé, Bert van der Vegt, John Martens, Peter Bult, Vincent T H B M Smit, Marco J Koudijs, Isaac J Nijman, Emile E Voest, Pier Selenica, Britta Weigelt, Jorge S Reis-Filho, Elsken van der Wall, Edwin Cuppen and Paul J van Diest

Male breast cancer (MBC) is extremely rare and accounts for less than 1% of all breast malignancies. Therefore, clinical management of MBC is currently guided by research on the disease in females. In this study, DNA obtained from 45 formalin-fixed paraffin-embedded (FFPE) MBCs with and 90 MBCs (52 FFPE and 38 fresh-frozen) without matched normal tissues was subjected to massively parallel sequencing targeting all exons of 1943 cancer-related genes. The landscape of mutations and copy number alterations was compared to that of publicly available estrogen receptor (ER)-positive female breast cancers (smFBCs) and correlated to prognosis. From the 135 MBCs, 90% showed ductal histology, 96% were ER-positive, 66% were progesterone receptor (PR)-positive, and 2% HER2-positive, resulting in 50, 46 and 4% luminal A-like, luminal B-like and basal-like cases, respectively. Five patients had Klinefelter syndrome (4%) and 11% of patients harbored pathogenic BRCA2 germline mutations. The genomic landscape of MBC to some extent recapitulated that of smFBC, with recurrent PIK3CA (36%) and GATA3 (15%) somatic mutations, and with 40% of the most frequently amplified genes overlapping between both sexes. TP53 (3%) somatic mutations were significantly less frequent in MBC compared to smFBC, whereas somatic mutations in genes regulating chromatin function and homologous recombination deficiency-related signatures were more prevalent. MDM2 amplifications were frequent (13%), correlated with protein overexpression (P = 0.001) and predicted poor outcome (P = 0.007). In conclusion, despite similarities in the genomic landscape between MBC and smFBC, MBC is a molecularly unique and heterogeneous disease requiring its own clinical trials and treatment guidelines.