Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Kalman Kovacs x
Clear All Modify Search
Free access

Luis V Syro, Fabio Rotondo, Leon D Ortiz and Kalman Kovacs

Temozolomide is an alkylating chemotherapeutic agent used in malignant neuroendocrine neoplasia, melanoma, brain metastases and an essential component of adjuvant therapy in the treatment of glioblastoma multiforme and anaplastic astrocytoma. Since 2006, it has been used for the treatment of pituitary carcinomas and aggressive pituitary adenomas. Here, we discuss the current indications and results of temozolomide therapy in pituitary tumors, as well as frequently asked questions regarding temozolomide treatment, duration of therapy, dosage, tumor recurrence and resistance.

Free access

Fateme Salehi, Kalman Kovacs, Bernd W Scheithauer, Ricardo V Lloyd and Michael Cusimano

Pituitary tumor-transforming gene (PTTG) was only recently discovered. Its overexpression occurs in a wide variety of endocrine and non-endocrine tumors, including ones of pituitary, thyroid, ovary, breast, prostate, lung, esophagus, colon, and the central nervous system. It affects tumor invasiveness and recurrence in several systems, functions as a securin during cell cycle progression, and inhibits premature sister chromatid separation. PTTG is involved in multiple cellular pathways, including proliferation, DNA repair, transformation, angiogenesis induction, invasion, and the induction of genetic instability. In thyroid carcinomas, PTTG expression is a marker of invasiveness. PTTG is overexpressed in most pituitary adenomas, where it appears to correlate with recurrence and angiogenesis. Increasing evidence also points to the role of PTTG in endocrine organ development. For example, PTTG knockout mice show defective pancreatic β-cell proliferation. Herein, we review the current knowledge regarding PTTG-mediated pathways based on evidence from in vivo and in vitro studies as well as knockout mice models. We also summarize the issue of PTTG expression and its correlation with clinicopathologic parameters in patients with neoplasms, particularly of endocrine organs. In addition, we discuss in vitro and in vivo therapeutic models targeting PTTG overexpression.

Free access

Michael Solarski, Fabio Rotondo, William D Foulkes, John R Priest, Luis V Syro, Henriett Butz, Michael D Cusimano and Kalman Kovacs

In this review, the importance of the DICER1 gene in the function of endocrine cells is discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the development, progression, cell proliferation, therapeutic responsiveness and behavior of several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, adrenocortical, ovarian and testicular tumors. Although significant progress has been made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations.

Free access

Andrea Weckman, Fabio Rotondo, Antonio Di Ieva, Luis V Syro, Henriett Butz, Michael D Cusimano and Kalman Kovacs

Autophagy is an important intracellular process involving the degradation of cytoplasmic components. It is involved in both physiological and pathological conditions, including cancer. The role of autophagy in cancer is described as a ‘double-edged sword,’ a term that reflects its known participation in tumor suppression, tumor survival and tumor cell proliferation. Available research regarding autophagy in endocrine cancer supports this concept. Autophagy shows promise as a novel therapeutic target in different types of endocrine cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. At present, however, there is very little research concerning autophagy in endocrine tumors. No research was reported connecting autophagy to some of the tumors of the endocrine glands such as the pancreas and ovary. This review aims to elucidate the roles of autophagy in different types of endocrine cancer and highlight the need for increased research in the field.