Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Liang Jin x
Clear All Modify Search
Free access

Yong Lu, Didier J L Mekoo, Kedong Ouyang, Xiangbing Hu, Yanhua Liu, Ming Lin, Liang Jin, Rongyue Cao, Taiming Li, Yankai Zhang, Hao Fan and Jingjing Liu

Previous studies demonstrated that the elevated expression and receptor binding of gastrin-releasing peptide (GRP) in various types of cancer suggest that GRP might be a putative target for immunotherapy in neoplastic diseases. DNA vaccine for hormone/growth factor immune deprivation represents a feasible and attractive approach for cancer treatment; nevertheless, there is still a need to increase the potency of the DNA vaccine. Here, based on six copies of the B cell epitope GRP18–27 in a linear alignment as an immunogen, we designed several anti-GRP DNA vaccines containing different combinations of immunoadjuvants, such as HSP65, tetanus toxoid830–844 (T), pan HLA-DR-binding epitope (PADRE) (P), and mycobacterial HSP70407–426 (M), on a backbone of pCR3.1 plasmid vector with eight 5′-GACGTT-3′ CpG motifs and the VEGF183 signal peptide (VS). The effects of these immunoadjuvants in enhancing GRP-specific humoral immune response were then evaluated by comparing the respective immunogenicity and antitumor effects. Immunization of mice with pCR3.1-VS-HSP65-TP-GRP6-M2 elicited much higher levels of specific anti-GRP antibodies and more effectively inhibited the growth of a GRP-dependent tumor RM-1 in vivo. Interestingly, plasmids encoding for 2HSP70407–426, but not the one with 1 or 3HSP70407–426 showed stronger immune stimulatory potential as well as impressive antitumor activity, suggesting that 2HSP70407–426 is an efficient molecular adjuvant for developing self-epitope vaccines. The highly immunogenic, potent anti-tumorigenic and antiangiogenesis activities of the anti-GRP DNA vaccine offered a novel immunotherapeutic approach in the treatment of GRP-dependent tumors and their complications.