Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Lin Huang x
Clear All Modify Search
Free access

J -D Lin, B -Y Huang and H -Y Chang

To investigate the difficulties in the diagnosis of thyroid microcarcinoma and to present the results of delaying diagnosis for these patients, we retrospectively analyzed the clinical information of 1259 thyroid carcinoma patients in one medical center. During a period of 20 years, from January 1977 to June 1997, 1259 thyroid cancer patients, including 921 papillary thyroid carcinoma patients, who received treatment and were followed-up at Chang Gung Medical Center in Linkou, Taiwan, were evaluated for inclusion in the study. Of these patients, 127 (13.2%) were diagnosed as having thyroid microcarcinoma. Forty-five patients were diagnosed as malignancy or suspicious malignancy preoperatively with ultrasonography and fine needle aspiration cytological examinations. In the analysis, the 127 thyroid microcarcinoma patients who received surgical treatment could be divided into four groups. Group I: patients with thyroid microcarcinoma with hyperthyroidism or hyperparathyroidism, in most of whom (except four patients) the thyroid microcarcinoma was found incidentally during the operation (28 cases). Group II: thyroid microcarcinoma in benign larger thyroid nodule or multinodular goiter, or thyroid microcarcinoma in coexistence with nodule goiter in one patient. The thyroid microcarcinomas in this group were found incidentally except in five patients (58 cases). Group III: thyroid microcarcinoma which could be detected as thyroid nodule preoperatively (28 cases). Group IV: thyroid microcarcinoma presented with neck lymph node metastases or distant metastases of the thyroid carcinoma (13 cases). Median follow-up period of these 127 patients was 4.7 years. During the follow-up period, two patients died, including one patient in group IV who died of skull metastasis with brain invasion. Another patient died of stroke, which was, however, not related to thyroid carcinoma. In conclusion, most thyroid microcarcinoma patients experienced rather benign clinical courses, but for patients with thyroid microcarcinoma with distant metastases, aggressive surgical treatment followed by radioactive 131I treatment is indicated.

Open access

Dawei Wu, Dongwei Lv, Ting Zhang, Lianying Guo, Fangli Ma, Caihua Zhang, Guofeng Lv and Lin Huang

Ewing sarcoma family tumors (ESFTs) are a group of aggressive and highly metastatic tumors lacking efficient therapies. Insulin-like growth factor 1 receptor (IGF1R) blockade is one of the most efficient targeting therapy for ESFTs. However, the appliance is obstructed by drug resistance and disease recurrence due to the activation of insulin receptor (IR) signaling induced by IGF1R blockade. Herein β-elemene, a compound derived from natural plants, exhibited a remarkable proliferation repression on ESFT cells, which was weakened by a caspase inhibitor Z-VAD. β-elemene in combination with IGF1R inhibitors enhanced markedly the repression on cellular proliferation and mTOR activation by IGF1R inhibitors and suppressed the PI3K phosphorylation induced by IGF1R inhibitors. To investigate the mechanisms, we focused on the effects of β-elemene on IR signaling pathway. β-elemene significantly suppressed the insulin-driven cell growth and the activation of mTOR and PI3K in tumor cells, while the toxicity to normal hepatocytes was much lower. Further, the phosphorylation of IR was found to be suppressed notably by β-elemene specifically in tumor cells other than normal hepatocytes. In addition, β-elemene inhibited the growth of ESFT xenografts in vivo, and the phosphorylation of IR and S6 ribosomal protein was significantly repressed in the β-elemene-treated xenografts. These data suggest that β-elemene targets IR phosphorylation to inhibit the proliferation of tumor cells specifically and enhance the effects of IGF1R inhibitors. Thus, this study provides evidence for novel approaches by β-elemene alone or in combination with IGF1R blockades in ESFTs and IR signaling hyperactivated tumors.

Free access

Ssu-Ming Huang, Chingju Lin, Hsiao-Yun Lin, Chien-Ming Chiu, Chia-Wei Fang, Kuan-Fu Liao, Dar-Ren Chen and Wei-Lan Yeh

Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.

Restricted access

Yang-Hsiang Lin, Meng-Han Wu, Ya-Hui Huang, Chau-Ting Yeh, Hsiang-Cheng Chi, Chung-Ying Tsai, Wen-Yu Chuang, Chia-Jung Yu, I-Hsiao Chung, Ching-Ying Chen and Kwang-Huei Lin

Thyroid hormone (T3) and its receptor (TR) are involved in cancer progression. While deregulation of long non-coding RNA (lncRNA) expression has been detected in many tumor types, the mechanisms underlying specific involvement of lncRNAs in tumorigenicity remain unclear. Experiments from the current study revealed negative regulation of BC200 expression by T3/TR. BC200 was highly expressed in hepatocellular carcinoma (HCC) and effective as an independent prognostic marker. BC200 promoted cell growth and tumor sphere formation, which was mediated via regulation of cell cycle-related genes and stemness markers. Moreover, BC200 protected cyclin E2 mRNA from degradation. Cell growth ability was repressed by T3, but partially enhanced upon BC200 overexpression. Mechanistically, BC200 directly interacted with cyclin E2 and promoted CDK2–cyclin E2 complex formation. Upregulation of cell cycle-related genes in hepatoma samples was positively correlated with BC200 expression. Our collective findings support the utility of a potential therapeutic strategy involving targeting of BC200 for the treatment of HCC.

Free access

Yi-Lin Chang, Yu-Kan Hsu, Tsung-Fan Wu, Chieh-Ming Huang, Li-Yin Liou, Ya-Wen Chiu, Yu-Hsuan Hsiao, Fuh-Jinn Luo and Ta-Chun Yuan

Estrogen receptor α (ERA) is a DNA-binding transcription factor that plays an important role in the regulation of cell growth. Previous studies indicated that the expression of ERα in cell lines and tumors derived from oral squamous cell carcinoma (OSCC). The aim of this study was to examine the activity and function of ERα in OSCC cells and the mechanism underlying ERα activation. Immunochemical analyses in benign (n=11) and malignant (n=21) lesions of the oral cavity showed that ERα immunoreactivity was observed in 43% (9/21) of malignant lesions, whereas none of benign lesions showed ERα immunoreactivity. The ERα expression was also found in three OSCC cell lines and its transcriptional activity was correlated with cell growth. Addition of estradiol stimulated cell growth, whereas treatment of tamoxifen or knockdown of ERα expression caused reduced cell growth. Interestingly, the expression and activity of focal adhesion kinase (FAK) were associated with the phosphorylation of ERα at serine 118 in OSCC cells. Elevated expression of FAK in the slow-growing SCC25 cells caused increases in ERα phosphorylation, transcriptional activity, and cell growth rate, whereas knockdown of FAK expression in the rapid-growing OECM-1 cells led to reduced ERα phosphorylation and activity and retarded cell growth. Inhibition of the activity of protein kinase B (AKT), but not ERK, abolished FAK-promoted ERα phosphorylation. These results suggest that OSCC cells expressed functional ERα, whose activity can be enhanced by FAK/AKT signaling, and this was critical for promoting cell growth. Thus, FAK and ERα can serve as the therapeutic targets for the treatment of OSCC.

Free access

Yu-Li Chen, Cheng-Yang Chou, Ming-Cheng Chang, Han-Wei Lin, Ching-Ting Huang, Shu-Feng Hsieh, Chi-An Chen and Wen-Fang Cheng

Aside from tumor cells, ovarian cancer-related ascites contains the immune components. The aim of this study was to evaluate whether a combination of clinical and immunological parameters can predict survival in patients with ovarian cancer. Ascites specimens and medical records from 144 ovarian cancer patients at our hospital were used as the derivation group to select target clinical and immunological factors to generate a risk-scoring system to predict patient survival. Eighty-two cases from another hospital were used as the validation group to evaluate this system. The surgical status and expression levels of interleukin 17a (IL17a) and IL21 in ascites were selected for the risk-scoring system in the derivation group. The areas under the receiver operating characteristic (AUROC) curves of the overall score for disease-free survival (DFS) of the ovarian cancer patients were 0.84 in the derivation group, 0.85 in the validation group, and 0.84 for all the patients. The AUROC curves of the overall score for overall survival (OS) of cases were 0.78 in the derivation group, 0.76 in the validation group, and 0.76 for all the studied patients. Good correlations between overall risk score and survival of the ovarian cancer patients were demonstrated by sub-grouping all participants into four groups (P for trend <0.001 for DFS and OS). Therefore, acombination of clinical and immunological parameters can provide a practical scoring system to predict the survival of patients with ovarian carcinoma. IL17a and IL21 can potentially be used as prognostic and therapeutic biomarkers.

Free access

Jie Cai, Lin Li, Lei Ye, Xiaohua Jiang, Liyun Shen, Zhibo Gao, Weiyuan Fang, Fengjiao Huang, Tingwei Su, Yulin Zhou, Weiqing Wang and Guang Ning

Activating rearranged during transfection (RET) mutations function as the initiating causative mutation for multiple endocrine neoplasia type 2A (MEN2A). However, no conclusive findings regarding the non-RET genetic events have been reported. This is the first study, to our knowledge, examining genomic alterations in matched MEN2A-associated tumors. We performed exome sequencing and SNP array analysis of matched MEN2A tumors and germline DNA. Somatic alterations were validated in an independent set of patients using Sanger sequencing. Genes of functional interest were further evaluated. The germline RET mutation was found in all MEN2A-component tumors. Thirty-two somatic mutations were identified in the nine MEN2A-associated tumors, of which 28 (87.5%) were point mutations and 4 (12.5%) were small insertions, duplications, or deletions. We sequenced all the mutations as well as coding sequence regions of the 12 genes in an independent sample set including 35 medullary thyroid cancers (20 MEN2A) and 34 PCCs (22 MEN2A), but found no recurrent mutations. Recurrent alterations were found in 13 genes with either mutations or alterations in copy number, including an EIF4G1 mutation (p. E1147V). Mutation of EIF4G1 led to increased cell proliferation and RET/MAPK phosphorylation, while knockdown of EIF4G1 led to reduced cell proliferation and RET/MAPK phosphorylation in TT, MZ-CRC1, and PC-12 cells. We found fewer somatic mutations in endocrine tumors compared with non-endocrine tumors. RET was the primary driver in MEN2A-associated tumors. However, low-frequency alterations such as EIF4G1 might participate in MEN2A-associated tumorigenesis, possibly by regulating the activity of the RET pathway.

Free access

Chen-Hsin Liao, Shih-Chi Yeh, Ya-Hui Huang, Ruey-Nan Chen, Ming-Ming Tsai, Wei-Jan Chen, Hsiang-Cheng Chi, Pei-Ju Tai, Chia-Jung Liao, Sheng-Ming Wu, Wan-Li Cheng, Li-Mei Pai and Kwang-Huei Lin

The thyroid hormone 3,3′,5-triiodo-l-thyronine (T3) regulates growth, development, and differentiation processes in animals. These activities are mediated by the nuclear thyroid hormone receptors (TRs). Microarray analyses were performed previously to study the mechanism of regulation triggered by T3 treatment in hepatoma cell lines. The results showed that spondin 2 was regulated positively by T3. However, the underlying mechanism and the physiological role of T3 in the regulation of spondin 2 are not clear. To verify the microarray results, spondin 2 was further investigated using semi-quantitative reverse transcription-PCR and western blotting. After 48 h of T3 treatment in the HepG2–TRα1#1 cell line, spondin 2 mRNA and protein levels increased by 3.9- to 5.7-fold. Similar results were observed in thyroidectomized rats. To localize the regulatory region in spondin 2, we performed serial deletions of the promoter and chromatin immunoprecipitation assays. The T3 response element on the spondin 2 promoter was localized in the −1104/−1034 or −984/−925 regions. To explore the effect of spondin 2 on cellular function, spondin 2 knockdown cell lines were established from Huh7 cells. Knockdown cells had higher migration ability and invasiveness compared with control cells. Conversely, spondin 2 overexpression in J7 cells led to lower migration ability and invasiveness compared with control cells. Furthermore, this study demonstrated that spondin 2 overexpression in some types of hepatocellular carcinomas is TR dependent. Together, these experimental findings suggest that spondin 2, which is regulated by T3, has an important role in cell invasion, cell migration, and tumor progression.

Free access

Ssu-Ming Huang, Tzu-Sheng Chen, Chien-Ming Chiu, Leang-Kai Chang, Kuan-Fu Liao, Hsiao-Ming Tan, Wei-Lan Yeh, Gary Ro-Lin Chang, Min-Ying Wang and Dah-Yuu Lu

Glial cell line-derived neurotrophic factor (GDNF), a potent neurotrophic factor, has been shown to affect cancer cell metastasis and invasion. However, the molecular mechanisms underlying GDNF-induced colon cancer cell migration remain unclear. GDNF is found to be positively correlated with malignancy in human colon cancer patients. The migratory activities of two human colon cancer cell lines, HCT116 and SW480, were found to be enhanced in the presence of human GDNF. The expression of vascular endothelial growth factor (VEGF) was also increased in response to GDNF stimulation, along with VEGF mRNA expression and transcriptional activity. The enhancement of GDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Our results also showed that the expression of VEGF receptor 1 (VEGFR1) was increased in response to GDNF stimulation, whereas GDNF-induced cancer cell migration was reduced by a VEGFR inhibitor. The GDNF-induced VEGF expression was regulated by the p38 and PI3K/Akt signaling pathways. Treatment with GDNF increased nuclear hypoxia-inducible factor 1 α (HIF1α) accumulation and its transcriptional activity in a time-dependent manner. Moreover, GDNF increased hypoxia responsive element (HRE)-containing VEGF promoter transcriptional activity but not that of the HRE-deletion VEGF promoter construct. Inhibition of HIF1α by a pharmacological inhibitor or dominant-negative mutant reduced the GDNF-induced migratory activity in human colon cancer cells. These results indicate that GDNF enhances the migration of colon cancer cells by increasing VEGF–VEGFR interaction, which is mainly regulated by the p38, PI3K/Akt, and HIF1α signaling pathways.