Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Lisa M Butler x
Clear All Modify Search
Full access

Lisa M Butler, Margaret M Centenera and Johannes V Swinnen

One of the most typical hallmarks of prostate cancer cells is their exquisite dependence on androgens, which is the basis of the widely applied androgen deprivation therapy. Among the variety of key cellular processes and functions that are regulated by androgens, lipid metabolism stands out by its complex regulation and its many intricate links with cancer cell biology. Here, we review our current knowledge on the links between androgens and lipid metabolism in prostate cancer, and highlight recent developments and insights into the links between key oncogenic stimuli and altered lipid synthesis and/or uptake that may hold significant potential for biomarker development and provide new vulnerabilities for therapeutic intervention.

Full access

Luke A Selth, Wayne D Tilley and Lisa M Butler

The realization that microRNAs (miRNAs) are frequently deregulated in malignancy has had a major impact on cancer research. In particular, the recent finding that highly stable forms of miRNAs can be accurately measured in body fluids, including blood, has generated considerable excitement. Here, we discuss the potential of blood-based circulating miRNAs as diagnostic, prognostic, and predictive biomarkers of prostate cancer. We also describe practical considerations that may influence identification and/or measurement of miRNA biomarkers in the circulation. Finally, evidence is prevented for the emerging concept that circulating miRNAs are actively released by their cells of origin and can modulate gene expression at distal sites. These mobile miRNAs, which we term ‘hormomirs’ because of their hormone-like characteristics, could act as local or long-range signals to maintain normal homeostasis or influence the development and progression of diseases such as cancer.

Full access

Gerard A Tarulli, Lisa M Butler, Wayne D Tilley and Theresa E Hickey

While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumours in vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as in in vivo systems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.

Full access

Howard I Scher, Grant Buchanan, William Gerald, Lisa M Butler and Wayne D Tilley

The categorization of prostate cancers that are progressing after castration as ‘hormone-refractory’ evolved from the clinical observation that surgical or medical castration (i.e. androgen ablation therapy; AAT) is not curative and, despite an initial response, virtually all tumors eventually regrow. Successful AAT is contingent on the dependence of prostate cancer cells for androgen signaling through an intracellular mediator, the androgen receptor (AR) for survival. Current preclinical and clinical data imply that the AR is expressed and continues to mediate androgen signaling after failure of AAT. As AAT does not completely eliminate circulating androgens, sufficient concentrations of dihydrotestosterone may accumulate in tumor cells to maintain AR signaling, especially in the context of upregulated receptor levels or increased sensitivity of the AR for activation. In addition, ligands of non-testicular origin or ligand-independent activation can contribute to continued AR signaling. In many cases, therefore, from the perspective of the AR, a ‘hormone-refractory’ classification after failure of AAT is inappropriate. Classifying prostate tumors that progress after AAT as ‘castration-resistant’ may be more relevant. Clinical responses to second- and third-line hormonal therapies suggest that the mechanisms of AR activation are in part a function of previously administered AAT. Accordingly, the increasing trend to utilize AAT earlier in the course of the clinical disease may have a greater influence on the genotype and phenotype of the resistant tumor. In this article, we detail strategies to inhibit the growth of prostate cancer cells that specifically target the AR in addition to those practiced traditionally that indirectly target the receptor by reducing the amount of circulating ligand. We propose that treatment regimes combining AAT with direct AR targeting strategies may provide a more complete blockade of androgen signaling, thereby preventing or significantly delaying the emergence of treatment-resistant disease.

Full access

Margaret M Centenera, Sarah L Carter, Joanna L Gillis, Deborah L Marrocco-Tallarigo, Randall H Grose, Wayne D Tilley and Lisa M Butler

Persistent androgen receptor (AR) signaling in castration resistant prostate cancer (CRPC) underpins the urgent need for therapeutic strategies that better target this pathway. Combining classes of agents that target different components of AR signaling has the potential to delay resistance and improve patient outcomes. Many oncoproteins, including the AR, rely on the molecular chaperone heat shock protein 90 (Hsp90) for functional maturation and stability. In this study, enhanced anti-proliferative activity of the Hsp90 inhibitors 17-allylamino-demethoxygeldanamycin (17-AAG) and AUY922 in androgen-sensitive and CRPC cells was achieved when the agents were used in combination with AR antagonists bicalutamide or enzalutamide. Moreover, significant caspase-dependent cell death was achieved using sub-optimal agent doses that individually have no effect. Expression profiling demonstrated regulation of a broadened set of AR target genes with combined 17-AAG and bicalutamide compared with the respective single agent treatments. This enhanced inhibition of AR signaling was accompanied by impaired chromatin binding and nuclear localization of the AR. Importantly, expression of the AR variant AR-V7 that is implicated in resistance to AR antagonists was not induced by combination treatment. Likewise, the heat shock response that is typically elicited with therapeutic doses of Hsp90 inhibitors, and is a potential mediator of resistance to these agents, was significantly reduced by combination treatment. In summary, the co-targeting strategy in this study more effectively inhibits AR signaling than targeting AR or HSP90 alone and prevents induction of key resistance mechanisms in prostate cancer cells. These findings merit further evaluation of this therapeutic strategy to prevent CRPC growth.

Full access

Adel T Aref, Andrew D Vincent, Michael E O’Callaghan, Sean A Martin, Peter D Sutherland, Andrew J Hoy, Lisa M Butler and Gary A Wittert

Obese men have lower serum prostate-specific antigen (PSA) than comparably aged lean men, but the underlying mechanism remains unclear. The aim of this study was to determine the effect of obesity on PSA and the potential contributing mechanisms. A cohort of 1195 men aged 35 years and over at recruitment, with demographic, anthropometric (BMI, waist circumference (WC)) and serum hormone (serum testosterone, estradiol (E2)) PSA and hematology assessments obtained over two waves was assessed. Men with a history of prostate cancer or missing PSA were excluded, leaving 970 men for the final analysis. Mixed-effects regressions and mediation analyses adjusting for hormonal and volumetric factors explore the potential mechanisms relating obesity to PSA. After adjusting for age, PSA levels were lower in men with greater WC (P = 0.001). In a multivariable model including WC, age, E2/testosterone and PlasV as predictors, no statistically significant associations were observed between with PSA and either WC (P = 0.36) or PlasV (P = 0.49), while strong associations were observed with both E2/testosterone (P < 0.001) and age (P < 0.001). In the mediation analyses with PlasV as the mediator, the average causal mediation effect (ACME) explained roughly 20% of the total effect of WC on PSA (P = 0.31), while when E2/testosterone is a mediator, the ACME explained roughly 50% of the effect (P < 0.001). Our findings indicate that lower PSA levels in obese men, as compared to normal weight men, can be explained both by hormonal changes (elevated E2/testosterone ratio) and hemodilution. Hormonal factors therefore represent a substantial but underappreciated mediating pathway.

Full access

Nicole L Moore, Grant Buchanan, Jonathan M Harris, Luke A Selth, Tina Bianco-Miotto, Adrienne R Hanson, Stephen N Birrell, Lisa M Butler, Theresa E Hickey and Wayne D Tilley

Recent evidence indicates that the estrogen receptor-α-negative, androgen receptor (AR)-positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5α-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDA-MB-453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype.

Full access

Luke A Selth, Matthew J Roberts, Clement W K Chow, Villis R Marshall, Suhail A R Doi, Andrew D Vincent, Lisa M Butler, Martin F Lavin, Wayne D Tilley and Robert A Gardiner