Search Results
You are looking at 1 - 3 of 3 items for
- Author: M Gueorguiev x
- Refine by access: All content x
Search for other papers by V V Vax in
Google Scholar
PubMed
Search for other papers by M Gueorguiev in
Google Scholar
PubMed
Search for other papers by I I Dedov in
Google Scholar
PubMed
Search for other papers by A B Grossman in
Google Scholar
PubMed
Search for other papers by M Korbonits in
Google Scholar
PubMed
The oncogenes and/or tumour suppressor genes which may be involved in the transformation process for the vast majority of pituitary tumours remain unknown. There is substantial evidence for derangement of cell cycle control in such tumours, but cell cycle protein mutations identified in other human malignancies are restricted to only a very small subset of sporadic pituitary neoplasms. Krüppel-like factors are DNA-binding transcriptional regulators with diverse effects including the upregulation of the cell cycle protein p21(WAF1/CIP1). It has been reported that the Krüppel-like transcription factor 6 (KLF6) gene is mutated in a proportion (15-55%) of human prostate cancers, and more recent data are emerging regarding mutated KLF6 in nasopharyngeal carcinomas, astrocytoid gliomas and colorectal cancer. We therefore speculated that other tumours such as pituitary adenomas might also harbour such mutations that may be involved in the control of cell proliferation in the pituitary. The aim of the current study was thus to analyse the KLF6 gene for mutations in sporadic pituitary tumours. We analysed 60 pituitary adenomas (15 GH-, four ACTH-, two PRL-secreting and 39 non-functioning) with direct sequence analysis of exons 2 and 3 of the KLF6 gene, the region where most of the previously described mutations are located. Three non-functioning pituitary adenomas of the 60 pituitary tumours (5%) had two identical sequence changes in exon 2 (missense mutation Val165Met, 523G-->A and a silent substitution in Ser77Ser codon 261C-->T). Analysis of genomic DNA extracted from peripheral lymphocytes in one patient confirmed these changes to be present in the germline and they therefore probably represent polymorphisms, although we cannot exclude the possibility that these are predisposing germline mutations. We conclude that mutations of the KLF6 gene are unlikely to play an important role in sporadic pituitary tumorigenesis.
Search for other papers by M Muşat in
Google Scholar
PubMed
Search for other papers by M Korbonits in
Google Scholar
PubMed
Search for other papers by B Kola in
Google Scholar
PubMed
Search for other papers by N Borboli in
Google Scholar
PubMed
Search for other papers by M R Hanson in
Google Scholar
PubMed
Search for other papers by A M Nanzer in
Google Scholar
PubMed
Search for other papers by J Grigson in
Google Scholar
PubMed
Search for other papers by S Jordan in
Google Scholar
PubMed
Search for other papers by D G Morris in
Google Scholar
PubMed
Search for other papers by M Gueorguiev in
Google Scholar
PubMed
Search for other papers by M Coculescu in
Google Scholar
PubMed
Search for other papers by S Basuand in
Google Scholar
PubMed
Search for other papers by A B Grossman in
Google Scholar
PubMed
Pituitary tumours have previously been shown to harbour several abnormalities that cause deregulation of the cell cycle, particularly down-regulation of expression of the cyclin-dependent kinase inhibitor p27. However, it has been unclear whether these are the primary initiating events, or are secondary to other more proximate alterations in signalling pathways. In other cellular systems the Akt signalling pathway has been associated with downstream modulation of cell-cycle control. The aim of the present study was to test the hypothesis that Akt signalling is enhanced in pituitary tumours, and to see if changes in Akt expression are related to previous findings on low expression levels of the nuclear cell-cycle inhibitor p27 in pituitary tumours. We examined normal and adenomatous human pituitary tissue for mRNA and protein expression of Akt1, Akt2 and p27, and the activation of Akt, as well the phosphatase involved in the inactivation of Akt, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). In pituitary adenomas Akt1 and Akt2 mRNA were found to be over-expressed compared with normal pituitary, while PTEN transcripts showed similar levels between the two tissue types. Immunohistochemical expression of phospho-Akt was found to be higher in the tumours than normal pituitaries, while the protein expression of nuclear p27 and PTEN was lower in the adenomas. However, the expression of p27 and Akt were not directly correlated. PTEN sequencing revealed no mutation in the coding region of the gene in pituitary adenomas, and thus we did not locate a cause for the increased phosphorylation of Akt. In summary, we have shown over-expression and activation of the Akt pathway in pituitary tumours, and we speculate that cell-cycle changes observed in such tumours are secondary to these more proximate alterations. Since Akt is a major downstream signalling molecule of growth factor-liganded tyrosine kinase receptors, our data are most compatible with an abnormality at this level as the primary driver of pituitary tumorigenesis.
Barts and the London School of Medicine, Department of Endocrinology and Internal Medicine, Division of Endocrinology and Metabolism, Internal Medicine, Institute of Endocrinology and Metabolism, Centre for Endocrinology, London, UK
Search for other papers by D Dworakowska in
Google Scholar
PubMed
Search for other papers by E Wlodek in
Google Scholar
PubMed
Search for other papers by C A Leontiou in
Google Scholar
PubMed
Search for other papers by S Igreja in
Google Scholar
PubMed
Barts and the London School of Medicine, Department of Endocrinology and Internal Medicine, Division of Endocrinology and Metabolism, Internal Medicine, Institute of Endocrinology and Metabolism, Centre for Endocrinology, London, UK
Search for other papers by M Cakir in
Google Scholar
PubMed
Search for other papers by M Teng in
Google Scholar
PubMed
Search for other papers by N Prodromou in
Google Scholar
PubMed
Search for other papers by M I Góth in
Google Scholar
PubMed
Barts and the London School of Medicine, Department of Endocrinology and Internal Medicine, Division of Endocrinology and Metabolism, Internal Medicine, Institute of Endocrinology and Metabolism, Centre for Endocrinology, London, UK
Search for other papers by S Grozinsky-Glasberg in
Google Scholar
PubMed
Search for other papers by M Gueorguiev in
Google Scholar
PubMed
Search for other papers by B Kola in
Google Scholar
PubMed
Search for other papers by M Korbonits in
Google Scholar
PubMed
Search for other papers by A B Grossman in
Google Scholar
PubMed
Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) cascades are key signalling pathways interacting with each other to regulate cell growth and tumourigenesis. We have previously shown B-Raf and Akt overexpression and/or overactivation in pituitary adenomas. The aim of this study is to assess the expression of their downstream components (MEK1/2, ERK1/2, mTOR, TSC2, p70S6K) and effectors (c-MYC and CYCLIN D1). We studied tissue from 16 non-functioning pituitary adenomas (NFPAs), six GH-omas, six prolactinomas and six ACTH-omas, all collected at transsphenoidal surgery; 16 normal autopsy pituitaries were used as controls. The expression of phospho and total protein was assessed with western immunoblotting, and the mRNA expression with quantitative RT-PCR. The expression of pSer217/221 MEK1/2 and pThr183 ERK1/2 (but not total MEK1/2 or ERK1/2) was significantly higher in all tumour subtypes in comparison to normal pituitaries. There was no difference in the expression of phosphorylated/total mTOR, TSC2 or p70S6K between pituitary adenomas and controls. Neither c-MYC phosphorylation at Ser 62 nor total c-MYC was changed in the tumours. However, c-MYC phosphorylation at Thr58/Ser62 (a response target for Akt) was decreased in all tumour types. CYCLIN D1 expression was higher only in NFPAs. The mRNA expression of MEK1, MEK2, ERK1, ERK2, c-MYC and CCND1 was similar in all groups. Our data indicate that in pituitary adenomas both the Raf/MEK/ERK and PI3K/Akt/mTOR pathways are upregulated in their initial cascade, implicating a pro-proliferative signal derangement upstream to their point of convergence. However, we speculate that other processes, such as senescence, attenuate the changes downstream in these benign tumours.