Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Mariola Peczkowska x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Birke Bausch, Ulrich Wellner, Dirk Bausch, Francesca Schiavi, Marta Barontini, Gabriela Sanso, Martin K Walz, Mariola Peczkowska, Georges Weryha, Patrizia Dall'Igna, Giovanni Cecchetto, Gianni Bisogno, Lars C Moeller, Detlef Bockenhauer, Attila Patocs, Karoly Rácz, Dmitry Zabolotnyi, Svetlana Yaremchuk, Iveta Dzivite-Krisane, Frederic Castinetti, David Taieb, Angelica Malinoc, Ernst von Dobschuetz, Jochen Roessler, Kurt W Schmid, Giuseppe Opocher, Charis Eng, and Hartmut P H Neumann

A third of patients with paraganglial tumors, pheochromocytoma, and paraganglioma, carry germline mutations in one of the susceptibility genes, RET, VHL, NF1, SDHAF2, SDHA, SDHB, SDHC, SDHD, TMEM127, and MAX. Despite increasing importance, data for long-term prognosis are scarce in pediatric presentations. The European-American-Pheochromocytoma–Paraganglioma-Registry, with a total of 2001 patients with confirmed paraganglial tumors, was the platform for this study. Molecular genetic and phenotypic classification and assessment of gene-specific long-term outcome with second and/or malignant paraganglial tumors and life expectancy were performed in patients diagnosed at <18 years. Of 177 eligible registrants, 80% had mutations, 49% VHL, 15% SDHB, 10% SDHD, 4% NF1, and one patient each in RET, SDHA, and SDHC. A second primary paraganglial tumor developed in 38% with increasing frequency over time, reaching 50% at 30 years after initial diagnosis. Their prevalence was associated with hereditary disease (P=0.001), particularly in VHL and SDHD mutation carriers (VHL vs others, P=0.001 and SDHD vs others, P=0.042). A total of 16 (9%) patients with hereditary disease had malignant tumors, ten at initial diagnosis and another six during follow-up. The highest prevalence was associated with SDHB (SDHB vs others, P<0.001). Eight patients died (5%), all of whom had germline mutations. Mean life expectancy was 62 years with hereditary disease. Hereditary disease and the underlying germline mutation define the long-term prognosis of pediatric patients in terms of prevalence and time of second primaries, malignant transformation, and survival. Based on these data, gene-adjusted, specific surveillance guidelines can help effective preventive medicine.

Open access

Trisha Dwight, Edward Kim, Karine Bastard, Diana E Benn, Graeme Eisenhofer, Susan Richter, Massimo Mannelli, Elena Rapizzi, Aleksander Prejbisz, Mariola Pęczkowska, Karel Pacak, and Roderick Clifton-Bligh

Mosaic or somatic EPAS1 mutations are associated with a range of phenotypes including pheochromocytoma and/or paraganglioma (PPGL), polycythemia and somatostatinoma. The pathogenic potential of germline EPAS1 variants however is not well understood. We report a number of germline EPAS1 variants occurring in patients with PPGL, including a novel variant c.739C>A (p.Arg247Ser); a previously described variant c.1121T>A (p.Phe374Tyr); several rare variants, c.581A>G (p.His194Arg), c.2353C>A (p.Pro785Thr) and c.2365A>G (p.Ile789Val); a common variant c.2296A>C (p.Thr766Pro). We performed detailed functional studies to understand their pathogenic role in PPGL. In transient transfection studies, EPAS1/HIF-2α p.Arg247Ser, p.Phe374Tyr and p.Pro785Thr were all stable in normoxia. In co-immunoprecipitation assays, only the novel variant p.Arg247Ser showed diminished interaction with pVHL. A direct interaction between HIF-2α Arg247 and pVHL was confirmed in structural models. Transactivation was assessed by means of a HRE-containing reporter gene in transiently transfected cells, and significantly higher reporter activity was only observed with EPAS1/HIF-2α p.Phe374Tyr and p.Pro785Thr. In conclusion, three germline EPAS1 variants (c.739C>A (p.Arg247Ser), c.1121T>A (p.Phe374Tyr) and c.2353C>A (p.Pro785Thr)) all have some functional features in common with somatic activating mutations. Our findings suggest that these three germline variants are hypermorphic alleles that may act as modifiers to the expression of PPGLs.

Free access

Ioana N Milos, Karin Frank-Raue, Nelson Wohllk, Ana Luiza Maia, Eduardo Pusiol, Attila Patocs, Mercedes Robledo, Josefina Biarnes, Marta Barontini, Thera P Links, Jan Willem de Groot, Sarka Dvorakova, Mariola Peczkowska, Lisa A Rybicki, Maren Sullivan, Friedhelm Raue, Ioana Zosin, Charis Eng, and Hartmut P H Neumann

RET testing in multiple endocrine neoplasia type 2 for molecular diagnosis is the paradigm for the practice of clinical cancer genetics. However, precise data for distinct mutation-based risk profiles are not available. Here, we survey the clinical profile for one specific genotype as a model, TGC to TGG in codon 634 (C634W). By international efforts, we ascertained all available carriers of the RET C634W mutation. Age at diagnosis, penetrance, and clinical complications were analyzed for medullary thyroid carcinoma (MTC), pheochromocytoma, and hyperparathyroidism (HPT), as well as overall survival. Our series comprises 92 carriers from 20 unrelated families worldwide. Sixty-eight subjects had MTC diagnosed at age 3–72 years (mean 29). Lymph node metastases were observed in 16 subjects aged 20–72 and distant metastases in 4 subjects aged 28–69. Forty-one subjects had pheochromocytoma detected at age 18–67 (mean 36). Amongst the 28 subjects with MTC and pheochromocytoma, six developed pheochromocytoma before MTC. Six subjects had HPT diagnosed at age 26–52 (mean 39). Eighteen subjects died; of the 16 with known causes of death, 8 died of pheochromocytoma and 4 of MTC. Penetrance for MTC is 52% by age 30 and 83% by age 50, for pheochromocytoma penetrance is 20% by age 30 and 67% by age 50, and for HPT penetrance is 3% by age 30 and 21% by age 50. These data provide, for the first time, RET C634W-specific neoplastic risk and age-related penetrance profiles. The data may facilitate risk assessment and genetic counseling.

Free access

Hartmut P Neumann, William F Young Jr, Tobias Krauss, Jean-Pierre Bayley, Francesca Schiavi, Giuseppe Opocher, Carsten C Boedeker, Amit Tirosh, Frederic Castinetti, Juri Ruf, Dmitry Beltsevich, Martin Walz, Harald-Thomas Groeben, Ernst von Dobschuetz, Oliver Gimm, Nelson Wohllk, Marija Pfeifer, Delmar M Lourenço Jr, Mariola Peczkowska, Attila Patocs, Joanne Ngeow, Özer Makay, Nalini S Shah, Arthur Tischler, Helena Leijon, Gianmaria Pennelli, Karina Villar Gómez de las Heras, Thera P Links, Birke Bausch, and Charis Eng

Although the authors of the present review have contributed to genetic discoveries in the field of pheochromocytoma research, we can legitimately ask whether these advances have led to improvements in the diagnosis and management of patients with pheochromocytoma. The answer to this question is an emphatic Yes! In the field of molecular genetics, the well-established axiom that familial (genetic) pheochromocytoma represents 10% of all cases has been overturned, with >35% of cases now attributable to germline disease-causing mutations. Furthermore, genetic pheochromocytoma can now be grouped into five different clinical presentation types in the context of the ten known susceptibility genes for pheochromocytoma-associated syndromes. We now have the tools to diagnose patients with genetic pheochromocytoma, identify germline mutation carriers and to offer gene-informed medical management including enhanced surveillance and prevention. Clinically, we now treat an entire family of tumors of the paraganglia, with the exact phenotype varying by specific gene. In terms of detection and classification, simultaneous advances in biochemical detection and imaging localization have taken place, and the histopathology of the paraganglioma tumor family has been revised by immunohistochemical-genetic classification by gene-specific antibody immunohistochemistry. Treatment options have also been substantially enriched by the application of minimally invasive and adrenal-sparing surgery. Finally and most importantly, it is now widely recognized that patients with genetic pheochromocytoma/paraganglioma syndromes should be treated in specialized centers dedicated to the diagnosis, treatment and surveillance of this rare neoplasm.

Free access

Ernst von Dobschuetz, Helena Leijon, Camilla Schalin-Jäntti, Francesca Schiavi, Michael Brauckhoff, Mariola Peczkowska, Giovanna Spiazzi, Serena Demattè, Maria Enrica Cecchini, Paola Sartorato, Jolanta Krajewska, Kornelia Hasse-Lazar, Katarzyna Roszkowska-Purska, Elisa Taschin, Angelica Malinoc, Lars A Akslen, Johanna Arola, Dariusz Lange, Ambrogio Fassina, Gianmaria Pennelli, Mattia Barbareschi, Jutta Luettges, Aleksander Prejbisz, Andrzej Januszewicz, Tim Strate, Birke Bausch, Frederic Castinetti, Barbara Jarzab, Giuseppe Opocher, Charis Eng, and Hartmut P H Neumann

The precise diagnosis of thyroid neoplasias will guide surgical management. Primary thyroid paraganglioma has been rarely reported. Data on prevalence, immunohistochemistry (IHC), and molecular genetics in a systematic series of such patients are pending. We performed a multinational population-based study on thyroid paraganglioma and analyzed prevalence, IHC, and molecular genetics. Patients with thyroid paraganglioma were recruited from the European-American-Head-and-Neck-Paraganglioma-Registry. Demographic and clinical data were registered. Histopathology and IHC were re-investigated. All patients with thyroid paraganglioma underwent molecular genetic analyses of the SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, RET, TMEM127, and MAX genes. Analyses included Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) for detection of large rearrangements. Of 947 registrants, eight candidates were initially identified. After immunohistochemical analyses of these eight subjects, 5 (0.5%) were confirmed to have thyroid paraganglioma. IHC was positive for chromogranin, synaptophysin, and S-100 and negative for calcitonin in all five thyroid paragangliomas, whereas the three excluded candidate tumors stained positive for pan-cytokeratin, a marker excluding endocrine tumors. Germline variants, probably representing mutations, were found in four of the five confirmed thyroid paraganglioma cases, two each in SDHA and SDHB, whereas the excluded cases had no mutations in the tested genes. Thyroid paraganglioma is a finite entity, which must be differentiated from medullary thyroid carcinoma, because medical, surgical, and genetic management for each is different. Notably, approximately 80% of thyroid paragangliomas are associated with germline variants, with implications for additional tumors and a potential risk for the family. As opposed to sporadic tumors, surgical management and extent of resection are different for heritable tumors, each guided by the precise gene involved.

Free access

Frederic Castinetti, Ana Luiza Maia, Mariola Peczkowska, Marta Barontini, Kornelia Hasse-Lazar, Thera P Links, Rodrigo A Toledo, Sarka Dvorakova, Caterina Mian, Maria Joao Bugalho, Stefania Zovato, Maria Alevizaki, Andrei Kvachenyuk, Birke Bausch, Paola Loli, Simona R Bergmann, Attila Patocs, Marija Pfeifer, Josefina Biarnes Costa, Ernst von Dobschuetz, Claudio Letizia, Gerlof Valk, Marcin Barczynski, Malgorzata Czetwertynska, John T M Plukker, Paola Sartorato, Tomas Zelinka, Petr Vlcek, Svetlana Yaremchuk, Georges Weryha, Letizia Canu, Nelson Wohllk, Frederic Sebag, Martin K Walz, Charis Eng, and Hartmut P H Neumann

Free access

Zoran Erlic, Ursula Ploeckinger, Alberto Cascon, Michael M Hoffmann, Laura von Duecker, Aurelia Winter, Gerit Kammel, Janina Bacher, Maren Sullivan, Berend Isermann, Lars Fischer, Andreas Raffel, Wolfram Trudo Knoefel, Matthias Schott, Tobias Baumann, Oliver Schaefer, Tobias Keck, Richard P Baum, Ioana Milos, Mihaela Muresan, Mariola Peczkowska, Andrzej Januszewicz, Kenko Cupisti, Anke Tönjes, Mathias Fasshauer, Jan Langrehr, Peter von Wussow, Abbas Agaimy, Günter Schlimok, Regina Lamberts, Thorsten Wiech, Kurt Werner Schmid, Alexander Weber, Mercedes Nunez, Mercedes Robledo, Charis Eng, Hartmut P H Neumann, and for the VHL-ICT Consortium and the German NET Registry

Pancreatic islet cell tumors (ICTs) occur as sporadic neoplasias or as a manifestation of multiple endocrine neoplasia type 1 (MEN1) and von Hippel–Lindau disease (VHL). Molecular classification of ICTs is mandatory for timely diagnosis and surveillance. Systematic comparison of VHL-ICTs and sporadic ICTs has been lacking. Our registry-based approaches used the German NET-Registry with 259 patients with neuroendocrine tumors (NETs), who were primarily diagnosed with NETs, and the German VHL-Registry with 485 molecular genetically confirmed patients who had undergone magnetic resonance imaging or computed tomography of the abdomen. All patients provided blood DNA for testing of the MEN1 and VHL genes for intragenic mutations and large deletions. In the NET-Registry, 9/101 patients (8.9%) with ICTs had germline mutations, 8 in MEN1 and 1 in VHL. In the VHL-Registry, prevalence of NETs was 52/487 (10.6%), and all were ICTs. Interestingly, of those with VHL p.R167W, 47% developed ICTs, compared to 2% of those with p.Y98H. In total, there were 92 truly sporadic, i.e. mutation-negative ICT patients. Comparing these with the 53 VHL-ICT patients, the statistically significant differences were predominance of female gender (P=0.01), multifocal ICTs (P=0.0029), and lower malignancy rate (P<0.001) in VHL-ICTs compared to sporadic cases. VHL was prevalent in <0.5% of NETs, while NETs occur in ∼10% of VHL, virtually exclusively as ICTs, which are rarely the first presentation. Patients with NETs should not be subjected to genetic testing of the VHL gene, unless they have multifocal ICTs, other VHL-associated tumors, and/or a family history for VHL.

Free access

Tobias Krauss, Alfonso Massimiliano Ferrara, Thera P Links, Ulrich Wellner, Irina Bancos, Andrey Kvachenyuk, Karina Villar Gómez de las Heras, Marina Y Yukina, Roman Petrov, Garrett Bullivant, Laura von Duecker, Swati Jadhav, Ursula Ploeckinger, Staffan Welin, Camilla Schalin-Jäntti, Oliver Gimm, Marija Pfeifer, Joanne Ngeow, Kornelia Hasse-Lazar, Gabriela Sansó, Xiaoping Qi, M Umit Ugurlu, Rene E Diaz, Nelson Wohllk, Mariola Peczkowska, Jens Aberle, Delmar M Lourenço Jr, Maria A A Pereira, Maria C B V Fragoso, Ana O Hoff, Madson Q Almeida, Alice H D Violante, Ana R P Quidute, Zhewei Zhang, Mònica Recasens, Luis Robles Díaz, Tada Kunavisarut, Taweesak Wannachalee, Sirinart Sirinvaravong, Eric Jonasch, Simona Grozinsky-Glasberg, Merav Fraenkel, Dmitry Beltsevich, Viacheslav I Egorov, Dirk Bausch, Matthias Schott, Nikolaus Tiling, Gianmaria Pennelli, Stefan Zschiedrich, Roland Därr, Juri Ruf, Timm Denecke, Karl-Heinrich Link, Stefania Zovato, Ernst von Dobschuetz, Svetlana Yaremchuk, Holger Amthauer, Özer Makay, Attila Patocs, Martin K Walz, Tobias B Huber, Jochen Seufert, Per Hellman, Raymond H Kim, Ekaterina Kuchinskaya, Francesca Schiavi, Angelica Malinoc, Nicole Reisch, Barbara Jarzab, Marta Barontini, Andrzej Januszewicz, Nalini Shah, William F Young Jr, Giuseppe Opocher, Charis Eng, Hartmut P H Neumann, and Birke Bausch

Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel–Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10–75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2 cm; P < 0.001) and tumor volume doubling time (TVDT) was faster (22 vs 126 months; P = 0.001). All metastatic tumors were ≥2.8 cm. Codons 161 and 167 were hotspots for VHL germline mutations with enhanced risk for metastatic PanNETs. Multivariate prediction modeling disclosed maximum tumor diameter and TVDT as significant predictors for metastatic disease (positive and negative predictive values of 51% and 100% for diameter cut-off ≥2.8 cm, 44% and 91% for TVDT cut-off of ≤24 months). In 117 of 273 patients, PanNETs >1.5 cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs <2.8 cm vs ≥2.8 cm (94% vs 85% by 10 years; P = 0.020; 80% vs 50% at 10 years; P = 0.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8 cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs.