FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: P Santisteban x
- Refine by Access: All content x
Jesús Morillo-Bernal, Lara P Fernández, and Pilar Santisteban
G Riesco-Eizaguirre, P Gutiérrez-Martínez, M A García-Cabezas, M Nistal, and P Santisteban
The oncogene BRAFV600E is the most frequent genetic event in papillary thyroid carcinoma (PTC) but its prognostic impact still remains to be elucidated. We evaluated a representative series of 67 individuals with PTC who underwent total thyroidectomy. BRAF-positive tumours correlated with early recurrences (32% vs 7.6%; P=0.02) during a median postoperative follow-up period of 3 years. Interestingly, within the recurrences, a significant majority had negative radioiodine (131I) total body scans, predicting a poorer outcome as treatment with 131I is not effective. This last observation led us to investigate the role of BRAFV600E and the MEK-ERK pathway in thyroid dedifferentiation, particularly in Na+/I− symporter (NIS) impairment, as this thyroid-specific plasma membrane glycoprotein mediates active transport of I− into the thyroid follicular cells. A subset of 60 PTC samples was evaluated for NIS immunoreactivity and, accordingly, we confirmed a significant low NIS expression and impaired targeting to membranes in BRAF-positive samples (3.5% vs 30%; P=0.005). Furthermore, experiments with differentiated PCCl3 thyroid cells demonstrated that transient expression of BRAFV600E sharply impaired both NIS expression and targeting to membrane and, surprisingly, this impairment was not totally dependent on the MEK-ERK pathway. We have concluded that BRAFV600E is a new prognostic factor in PTC that correlates with a high risk of recurrences and less differentiated tumours due to the loss of NIS-mediated 131I uptake.