Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Paolo Salerno x
Clear All Modify Search
Free access

Katrin-Janine Heiliger, Julia Hess, Donata Vitagliano, Paolo Salerno, Herbert Braselmann, Giuliana Salvatore, Clara Ugolini, Isolde Summerer, Tatjana Bogdanova, Kristian Unger, Gerry Thomas, Massimo Santoro and Horst Zitzelsberger

For an identification of novel candidate genes in thyroid tumourigenesis, we have investigated gene copy number changes in a Trk-T1 transgenic mouse model of thyroid neoplasia. For this aim, 30 thyroid tumours from Trk-T1 transgenics were investigated by comparative genomic hybridisation. Recurrent gene copy number alterations were identified and genes located in the altered chromosomal regions were analysed by Gene Ontology term enrichment analysis in order to reveal gene functions potentially associated with thyroid tumourigenesis. In thyroid neoplasms from Trk-T1 mice, a recurrent gain on chromosomal bands 1C4–E2.3 (10.0% of cases), and losses on 3H1–H3 (13.3%), 4D2.3–E2 (43.3%) and 14E4–E5 (6.7%) were identified. The genes Twist2, Ptma, Pde6d, Bmpr1b, Pdlim5, Unc5c, Srm, Trp73, Ythdf2, Taf12 and Slitrk5 are located in these chromosomal bands. Copy number changes of these genes were studied by fluorescence in situ hybridisation on 30 human papillary thyroid carcinoma (PTC) samples and altered gene expression was studied by qRT-PCR analyses in 67 human PTC. Copy number gains were detected in 83% of cases for TWIST2 and in 100% of cases for PTMA and PDE6D. DNA losses of SLITRK1 and SLITRK5 were observed in 21% of cases and of SLITRK6 in 16% of cases. Gene expression was significantly up-regulated for UNC5C and TP73 and significantly down-regulated for SLITRK5 in tumours compared with normal tissue. In conclusion, a global genomic copy number analysis of thyroid tumours from Trk-T1 transgenic mice revealed a number of novel gene alterations in thyroid tumourigenesis that are also prevalent in human PTCs.

Free access

Roberto Bellelli, Maria Domenica Castellone, Ginesa Garcia-Rostan, Clara Ugolini, Carmelo Nucera, Peter M Sadow, Tito Claudio Nappi, Paolo Salerno, Maria Carmela Cantisani, Fulvio Basolo, Tomas Alvarez Gago, Giuliana Salvatore and Massimo Santoro

Anaplastic thyroid carcinoma (ATC) is a very aggressive thyroid cancer. forkhead box protein M1 (FOXM1) is a member of the forkhead box family of transcription factors involved in control of cell proliferation, chromosomal stability, angiogenesis, and invasion. Here, we show that FOXM1 is significantly increased in ATCs compared with normal thyroid, well-differentiated thyroid carcinomas (papillary and/or follicular), and poorly differentiated thyroid carcinomas (P=0.000002). Upregulation of FOXM1 levels in ATC cells was mechanistically linked to loss-of-function of p53 and to the hyperactivation of the phosphatidylinositol-3-kinase/AKT/FOXO3a pathway. Knockdown of FOXM1 by RNA interference inhibited cell proliferation by arresting cells in G2/M and reduced cell invasion and motility. This phenotype was associated with decreased expression of FOXM1 target genes, like cyclin B1 (CCNB1), polo-like kinase 1 (PLK1), Aurora B (AURKB), S-phase kinase-associated protein 2 (SKP2), and plasminogen activator, urokinase: uPA (PLAU). Pharmacological inhibition of FOXM1 in an orthotopic mouse model of ATC reduced tumor burden and metastasization. All together, these findings suggest that FOXM1 represents an important player in thyroid cancer progression to the anaplastic phenotype and a potential therapeutic target for this fatal cancer.

Free access

Lilja E Laatikainen, Maria D Castellone, Aline Hebrant, Candice Hoste, Maria C Cantisani, Juha P Laurila, Giuliana Salvatore, Paolo Salerno, Fulvio Basolo, Johnny Näsman, Jacques E Dumont, Massimo Santoro and Mikko O Laukkanen

Reactive oxygen species, specifically hydrogen peroxide (H2O2), have a significant role in hormone production in thyroid tissue. Although recent studies have demonstrated that dual oxidases are responsible for the H2O2 synthesis needed in thyroid hormone production, our data suggest a pivotal role for superoxide dismutase 3 (SOD3) as a major H2O2-producing enzyme. According to our results, Sod3 is highly expressed in normal thyroid, and becomes even more abundant in rat goiter models. We showed TSH-stimulated expression of Sod3 via phospholipase C–Ca2+ and cAMP–protein kinase A, a pathway that might be disrupted in thyroid cancer. In line with this finding, we demonstrated an oncogene-dependent decrease in Sod3 mRNA expression synthesis in thyroid cancer cell models that corresponded to a similar decrease in clinical patient samples, suggesting that SOD3 could be used as a differentiation marker in thyroid cancer. Finally, the functional analysis in thyroid models indicated a moderate role for SOD3 in regulating normal thyroid cell proliferation being in line with our previous observations.

Restricted access

Ornella Affinito, Paolo Salerno, Alfonso D’Alessio, Mariella Cuomo, Ermanno Florio, Francesca Carlomagno, Agnese Proietti, Riccardo Giannini, Fulvio Basolo, Lorenzo Chiariotti, Sergio Cocozza and Massimo Santoro

Molecular differentiation between benign (follicular thyroid adenoma (FTA)) and malignant (follicular thyroid carcinoma (FTC)) thyroid neoplasms is challenging. Here, we explored the genome-wide DNA methylation profile of FTA (n.10) and FTC (n.11) compared to normal thyroid (NT) (n.7) tissues. FTC featured 3564 differentially methylated CpGs (DMCpG), most (84%) of them hypermethylated, with respect to normal controls. At the principal component analysis (PCA), the methylation profile of FTA occupied an intermediate position between FTC and normal tissue. A large fraction (n. 2385) of FTC-associated DMCpG was related (intragenic or within 1500 bp from the transcription start site) to annotated genes (n. 1786). FTC-hypermethylated genes were enriched for targets of the Polycomb transcriptional repressor complex and the specific histone H3 marks (H3K4me2/me3-H3K27me3) found in chromatin domains known as ‘bivalent’. Transcriptome profiling by RNAseq showed that 7.9% of the DMCpGs-associated genes were differentially expressed in FTC compared to NT, suggesting that altered DNA methylation may contribute to their altered expression. Overall, this study suggests that perturbed DNA methylation, in particular hypermethylation, is a component of the molecular mechanisms leading to the formation of FTC and that DNA methylation profiling may help differentiating FTCs from their benign counterpart.