Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Patricia L M Dahia x
  • All content x
Clear All Modify Search
Free access

Yilun Deng, Shahida K Flores, ZiMing Cheng, Yuejuan Qin, Robin C Schwartz, Carl Malchoff, and Patricia L M Dahia

Free access

Yilun Deng, Shahida K Flores, ZiMing Cheng, Yuejuan Qin, Robin C Schwartz, Carl Malchoff, and Patricia L M Dahia

Free access

Patricia L M Dahia, Roderick Clifton-Bligh, Anne-Paule Gimenez-Roqueplo, Mercedes Robledo, and Camilo Jimenez

Pheochromocytomas and paragangliomas (PPGLs) are adrenal or extra-adrenal autonomous nervous system-derived tumors. Most PPGLs are benign, but approximately 15% progress with metastases (mPPGLs). mPPGLs are more likely to occur in patients with large pheochromocytomas, sympathetic paragangliomas, and norepinephrine-secreting tumors. Older subjects, those with larger tumors and synchronous metastases, advance more rapidly. Germline mutations of SDHB, FH, and possibly SLC25A11, or somatic MAML3 disruptions relate to a higher risk for metastatic disease. However, it is unclear whether these mutations predict outcome. Once diagnosed, there are no well-established predictors of outcome in mPPGLs, and aggressive tumors have few therapeutic options and limited response. High-specific activity (HSA) metaiodine-benzyl-guanidine (MIBG) is the first FDA approved treatment and shows clinical effectiveness for MIBG-avid mPPGLs. Ongoing and future investigations should involve validation of emerging candidate outcome biomarkers, including somatic ATRX, TERT, and microRNA disruptions and identification of novel prognostic indicators. Long-term effect of HSA-MIBG and the role of other radiopharmaceuticals should be investigated. Novel trials targeting molecular events prevalent in SDHB/FH mutant tumors, such as activated hypoxia inducible factor 2 (HIF2), angiogenesis, or other mitochondrial defects that might confer unique vulnerability to these tumors should be developed and initiated. As therapeutic options are anticipated to expand, multi-institutional collaborations and well-defined clinical and molecular endpoints will be critical to achieve higher success rates in improving care for patients with mPPGLs.

Free access

Rodrigo A Toledo, Yuejuan Qin, Subramanya Srikantan, Nicole Paes Morales, Qun Li, Yilun Deng, Sang-Woo Kim, Maria Adelaide A Pereira, Sergio P A Toledo, Xiaoping Su, Ricardo C T Aguiar, and Patricia L M Dahia

Pheochromocytomas and paragangliomas are highly vascular tumors of the autonomic nervous system. Germline mutations, including those in hypoxia-related genes, occur in one third of the cases, but somatic mutations are infrequent in these tumors. Using exome sequencing of six paired constitutive and tumor DNA from sporadic pheochromocytomas and paragangliomas, we identified a somatic mutation in the HIF2A (EPAS1) gene. Screening of an additional 239 pheochromocytomas/paragangliomas uncovered three other HIF2A variants in sporadic (4/167, 2.3%) but not in hereditary tumors or controls. Three of the mutations involved proline 531, one of the two residues that controls HIF2α stability by hydroxylation. The fourth mutation, on Ser71, was adjacent to the DNA binding domain. No mutations were detected in the homologous regions of the HIF1A gene in 132 tumors. Mutant HIF2A tumors had increased expression of HIF2α target genes, suggesting an activating effect of the mutations. Ectopically expressed HIF2α mutants in HEK293, renal cell carcinoma 786-0, or rat pheochromocytoma PC12 cell lines showed increased stability, resistance to VHL-mediated degradation, target induction, and reduced chromaffin cell differentiation. Furthermore, mice injected with cells expressing mutant HIF2A developed tumors, and those with Pro531Thr and Pro531Ser mutations had shorter latency than tumors from mice with wild-type HIF2A. Our results support a direct oncogenic role for HIF2A in human neoplasia and strengthen the link between hypoxic pathways and pheochromocytomas and paragangliomas.

Free access

Graeme Eisenhofer, Stefan R Bornstein, Frederieke M Brouwers, Nai-Kong V Cheung, Patricia L Dahia, Ronald R de Krijger, Thomas J Giordano, Lloyd A Greene, David S Goldstein, Hendrik Lehnert, William M Manger, John M Maris, Hartmut P H Neumann, Karel Pacak, Barry L Shulkin, David I Smith, Arthur S Tischler, and William F Young Jr

Pheochromocytomas are rare catecholamine-producing neuroendocrine tumors that are usually benign, but which may also present as or develop into a malignancy. Predicting such behavior is notoriously difficult and there are currently no curative treatments for malignant tumors. This report follows from a workshop at the Banbury Conference Center, Cold Spring Harbor, New York, on the 16th–18th November 2003, held to review the state of science and to facilitate future progress in the diagnosis and treatment of malignant pheochromocytoma. The rarity of the tumor and the resulting fragmented nature of studies, typically involving small numbers of patients, represent limiting factors to the development of effective treatments and diagnostic or prognostic markers for malignant disease. Such development is being facilitated by the availability of new genomics-based tools, but for such approaches to succeed ultimately requires comprehensive clinical studies involving large numbers of patients, stringently collected clinical data and tumor samples, and interdisciplinary collaborations among multiple specialist centers. Nevertheless, the well-characterized hereditary basis and the unique functional nature of these neuroendocrine tumors provide a useful framework that offers advantages for establishing the pathways of tumorigenesis and malignancy. Such findings may have relevance for understanding the basis of other more common malignancies where similar frameworks are not available. As the relevant pathways leading to pheochromocytoma are established it should be possible to take advantage of the new generation of drugs being developed to target specific pathways in other malignancies. Again the success of this will require well-designed and coordinated multicenter studies.