Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Peter S Nelson x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Mark P Labrecque, Joshi J Alumkal, Ilsa M Coleman, Peter S Nelson, and Colm Morrissey

The use of androgen deprivation therapy and second-line anti-androgens in prostate cancer has led to the emergence of tumors employing multiple androgen receptor (AR)-dependent and AR-independent mechanisms to resist AR-targeted therapies in castration-resistant prostate cancer (CRPC). While the AR signaling axis remains the cornerstone for therapeutic development in CRPC, a clearer understanding of the heterogeneous biology of CRPC tumors is needed for innovative treatment strategies. In this review, we discuss the characteristics of CRPC tumors that lack AR activity and the temporal and spatial considerations for the conversion of an AR-dependent to an AR-independent tumor type. We describe the more prevalent treatment-emergent phenotypes arising in the CRPC disease continuum, including amphicrine, AR-low, double-negative, neuroendocrine and small cell phenotypes. We discuss the association between the loss of AR activity and tumor plasticity with a focus on the roles of transcription factors like SOX2, DNA methylation, alternative splicing, and the activity of epigenetic modifiers like EZH2, BRD4, LSD1, and the nBAF complex in conversion to a neuroendocrine or small cell phenotype in CRPC. We hypothesize that only a subset of CRPC tumors have the propensity for tumor plasticity and conversion to the neuroendocrine phenotype and outline how we might target these plastic and emergent phenotypes in CRPC. In conclusion, we assess the current and future avenues for treatment and determine that the heterogeneity of CRPCs lacking AR activity will require diverse treatment approaches.

Restricted access

Kathrin A Schmohl, Yang Han, Mariella Tutter, Nathalie Schwenk, Rim S J Sarker, Katja Steiger, Sibylle I Ziegler, Peter Bartenstein, Peter J Nelson, and Christine Spitzweg

Thyroid hormones are emerging as critical regulators of tumour growth and progression. To assess the contribution of thyroid hormone signalling via integrin αvβ3, expressed on many tumour cells, endothelial cells, and stromal cells, to tumour growth, we compared the effects of thyroid hormones vs tetrac, a specific inhibitor of thyroid hormone action at integrin αvβ3, in two murine xenograft tumour models with and without integrin αvβ3 expression. Integrin αvβ3-positive human anaplastic thyroid cancer cells SW1736 and integrin αvβ3-negative human hepatocellular carcinoma cells HuH7 were injected into the flanks of nude mice. Tumour growth was monitored in euthyroid, hyperthyroid, hypothyroid, and euthyroid tetrac-treated mice. In SW1736 xenografts, hyperthyroidism led to a significantly increased tumour growth resulting in a decreased survival compared to euthyroid mice, while tumour growth was significantly reduced and, hence, survival prolonged in hypothyroid and tetrac-treated mice. Both proliferation and vascularisation, as determined by Ki67 and CD31 immunofluorescence staining, respectively, were significantly increased in tumours from hyperthyroid mice as compared to hypothyroid and tetrac-treated mice. No differences in tumour growth, survival, or Ki67 staining were observed between the different groups in integrin αvβ3-negative HuH7 xenografts. Vascularisation, however, was significantly decreased in hypothyroid and tetrac-treated mice compared to euthyroid and hyperthyroid mice. Apoptosis was not affected in either tumour model, nor were cell proliferation or apoptosis in vitro. Tumour growth regulation by thyroid hormones in αvβ3-positive tumours has important implications for cancer patients, especially those with thyroid dysfunctions and thyroid cancer patients treated with thyrotropin-suppressive L-thyroxine doses.