Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Rajesh V Thakker x
Clear All Modify Search
Free access

Brian Harding, Manuel C Lemos, Anita A C Reed, Gerard V Walls, Jeshmi Jeyabalan, Michael R Bowl, Hilda Tateossian, Nicky Sullivan, Tertius Hough, William D Fraser, Olaf Ansorge, Michael T Cheeseman and Rajesh V Thakker

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized in man by parathyroid, pancreatic, pituitary and adrenal tumours. The MEN1 gene encodes a 610-amino acid protein (menin) which is a tumour suppressor. To investigate the in vivo role of menin, we developed a mouse model, by deleting Men1 exons 1 and 2 and investigated this for MEN1-associated tumours and serum abnormalities. Men1 +/− mice were viable and fertile, and 220 Men1 +/− and 94 Men1 +/+ mice were studied between the ages of 3 and 21 months. Survival in Men1 +/− mice was significantly lower than in Men1 +/+ mice (<68% vs >85%, P<0.01). Men1 +/− mice developed, by 9 months of age, parathyroid hyperplasia, pancreatic tumours which were mostly insulinomas, by 12 months of age, pituitary tumours which were mostly prolactinomas, and by 15 months parathyroid adenomas and adrenal cortical tumours. Loss of heterozygosity and menin expression was demonstrated in the tumours, consistent with a tumour suppressor role for the Men1 gene. Men1 +/− mice with parathyroid neoplasms were hypercalcaemic and hypophosphataemic, with inappropriately normal serum parathyroid hormone concentrations. Pancreatic and pituitary tumours expressed chromogranin A (CgA), somatostatin receptor type 2 and vascular endothelial growth factor-A. Serum CgA concentrations in Men1 +/− mice were not elevated. Adrenocortical tumours, which immunostained for 3-β-hydroxysteroid dehydrogenase, developed in seven Men1 +/− mice, but resulted in hypercorticosteronaemia in one out of the four mice that were investigated. Thus, these Men1 +/− mice are representative of MEN1 in man, and will help in investigating molecular mechanisms and treatments for endocrine tumours.

Restricted access

Carolina R.c. Pieterman, Samira Mercedes Sadowski, Jessica E. Maxwell, Matthew H.g. Katz, Kate E Lines, Christopher M. Heaphy, Amit Tirosh, Jenny E. Blau, Nancy Perrier, Mark A Lewis, John P Metzcar, Daniel M Halperin, Rajesh V Thakker and Gerlof D Valk

The PanNET Working Group of the 16th International Workshop on Multiple Endocrine Neoplasia convened in Houston, TX, USA, 27-19 March 2019 to discuss key unmet clinical needs related to PanNET in the context of MEN1, with a special focus on non-functioning (nf)-PanNETs. The participants represented a broad range of medical scientists as well as representatives from patient organizations, pharmaceutical industry and research societies. In a case-based approach, participants addressed early detection, surveillance, prognostic factors and management of localized and advanced disease. For each topic, after a review of current evidence, key unmet clinical needs and future research directives to make meaningful progress for MEN1 patients with nf-PanNETs were identified.

International multi-institutional collaboration is needed for adequately sized studies and validation of findings in independent datasets. Collaboration between basic, translational and clinical scientists is paramount to establishing a translational science approach. In addition, bringing clinicians, scientists and patients together improves the prioritization of research goals, assures a patient-centered approach and maximizes patient involvement. It was concluded that collaboration, research infrastructure, methodologic and reporting rigor are essential to any translational science effort. The highest priority for nf-PanNETs in MEN1 syndrome are (1) the development of a data and biospecimen collection architecture that is uniform across all MEN1 centers, (2) unified strategies for diagnosis and follow-up of incident and prevalent nf-PanNETs, (3) non-invasive detection of individual nf-PanNETs that have an increased risk of metastasis (4) chemoprevention clinical trials driven by basic research studies and (5) therapeutic targets for advanced disease based on biologically plausible mechanisms.