Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Shani Avniel-Polak x
Clear All Modify Search
Free access

Shani Avniel-Polak, Gil Leibowitz, Victoria Doviner, David J Gross and Simona Grozinsky-Glasberg

Patients with neuroendocrine neoplasms (NENs) often require systemic treatment, which is frequently limited by the emergence of drug resistance. mTOR inhibitors (mTORi), such as RAD001 (everolimus), have been shown to inhibit neoplasm progression. mTORi stimulates autophagy, a degradation pathway that might promote the survival of neoplasm cells that are exposed to anti-cancer therapy. Chloroquine (CQ), a well-known anti-malarial and anti-rheumatic drug, suppresses autophagy. Based on our previous results, we hypothesized that CQ may enhance the anti-tumorigenic effects of mTORi by inhibiting autophagy and we aimed to examine the anti-tumorigenic effect of CQ, alone or in combination with RAD001. We established a NEN subcutaneous xenograft mouse model and evaluated the effect of the drugs on tumor growth, mTOR pathway, autophagy and apoptosis. CQ alone and in combination with RAD001 significantly decreased neoplasm volume. Histopathological analysis revealed that the combination of CQ and RAD001 markedly inhibited mTOR activity and neoplasm cell growth, along with accumulation of autophagosomes and increased apoptosis. In conclusion, CQ enhances the anti-tumorigenic effect of RAD001 in vivo by inhibiting autophagy. Clinical trials addressing the effects of CQ therapy on neoplasm progression in patients with NENs, mainly in those treated with mTORi, are warranted.

Free access

Simona Grozinsky-Glasberg, Kate E Lines, Shani Avniel-Polak, Chas Bountra and Rajesh V Thakker

Neuroendocrine neoplasms (NENs) occur usually as sporadic tumours; however, rarely, they may arise in the context of a hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder characterised by the combined development of pancreatic NENs (pNENs) together with parathyroid and anterior pituitary tumours. The therapeutic decision for sporadic pNENs patients is multi-disciplinary and complex: based on the grade and stage of the tumor, various options (and their combinations) are considered, such as surgical excision (either curative or for debulking aims), biological drugs (somatostatin analogues), targeted therapies (mTOR inhibitors or tyrosine kinases (TK)/receptors inhibitors), peptide receptor radioligand therapy (PRRT), chemotherapy, and liver-directed therapies. However, treatment of MEN1-related NENs’ patients is even more challenging, as these tumours are usually multifocal with co-existing foci of heterogeneous biology and malignant potential, rendering them more resistant to the conventional therapies used in their sporadic counterparts, and therefore associated with a poorer prognosis. Moreover, clinical data using standard therapeutic options in MEN1-related NENs are scarce. Recent preclinical studies have identified potentially new targeted therapeutic options for treating MEN1-associated NENs, such as epigenetic modulators, Wnt pathway-targeting β-catenin antagonists, Ras signalling modulators, Akt/mTOR signalling modulators, novel somatostatin receptors analogues, anti-angiogenic drugs, as well as MEN1 gene replacement therapy. The present review aims to summarize these novel therapeutic opportunities for NENs developing in the context of MEN1 syndrome, with an emphasis on pancreatic NENs, as they are the most frequent ones studied in MEN1-NENs models to date; moreover, due to the recent shifting nomenclature of ‘pituitary adenomas’ to ‘pituitary neuroendocrine neoplasms’, relevant data on MEN1-pituitary tumours, when appropriate, are briefly described.